GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Singapore :Springer Singapore Pte. Limited,
    Keywords: Intelligent control systems -- Mathematical models. ; Automatic control -- Mathematical models. ; Artificial intelligence -- Engineering applications. ; Electronic books.
    Description / Table of Contents: This book examines iterative learning control (ILC) with a focus on design and implementation. It presents a framework with various methodologies to ensure the learnable bandwidth in the ILC system to be set with a balance between performance and stability.
    Type of Medium: Online Resource
    Pages: 1 online resource (232 pages)
    Edition: 1st ed.
    ISBN: 9789814585606
    Series Statement: Advances in Industrial Control Series
    DDC: 629.8
    Language: English
    Note: Intro -- Preface -- Contents -- 1 Introduction -- 1.1 Background -- 1.1.1 What Is ILC? -- 1.1.2 A Brief History -- 1.2 Basics of ILC -- 1.2.1 ILC Formulation -- 1.2.2 Comparison of ILC in Different Domains -- 1.3 ILC Design and Analysis -- 1.3.1 ILC Learning Laws -- 1.3.2 Two ILC Configurations -- 1.3.3 Convergence Analysis -- 1.3.4 Transient Analysis -- 1.4 Robotic System with ILC -- 1.5 About the Book -- References -- 2 Learnable Band Extension and Multi-channel Configuration -- 2.1 A-Type Learning Control -- 2.2 Convergence Analysis of A-Type ILC -- 2.3 Design of A-Type ILC -- 2.3.1 Lead-Time Selection -- 2.3.2 Gain Selection -- 2.3.3 Robustness in Design -- 2.4 A Design Example of A-Type ILC -- 2.4.1 Learning Control Design -- 2.4.2 Comparison of D-, P-, PD-, and A-Type ILCs -- 2.4.3 Case Study and Experiments -- 2.5 A-Type ILC Based Multiple Channel Learning -- 2.5.1 Multi-channel Structure for ILC -- 2.5.2 Error Separation -- 2.6 Multi-channel A-Type ILC -- 2.7 Design of Multi-channel A-Type ILC -- 2.8 Robot Application of Multi-channel A-Type ILCs -- 2.9 Conclusion -- References -- 3 Learnable Bandwidth Extension by Auto-Tunings -- 3.1 Cutoff Frequency Tuning -- 3.1.1 Objective and Problems -- 3.1.2 Learning Stability -- 3.1.3 Learning Divergence -- 3.1.4 Cutoff Frequency Tuning -- 3.1.5 Termination of Tuning -- 3.2 Lead Step Tuning -- 3.2.1 Basis of Tuning -- 3.2.2 Tuning Method -- 3.3 Experiment on Auto-Tuning ILC -- 3.3.1 Experiment 1: A-Type ILC with l=5 and γ=1 -- 3.3.2 Experiment 2: One-Step-Ahead ILC with l=1 and γ=1 -- 3.3.3 Experiment 3: Tuning Lead Step with γ=1 -- 3.4 Conclusion -- References -- 4 Reverse Time Filtering Based ILC -- 4.1 Best Phase Lead and Generation Method for SISO ILC System -- 4.2 Learning Control Using Reversed Time Input Runs -- 4.2.1 Learning Law -- 4.2.2 Model Based Approach. , 4.3 Comparison with Other Works -- 4.4 Case Study of Robot Application -- 4.4.1 Exact Zero Phase -- 4.4.2 Reverse Time Filtering Using a Model -- 4.4.3 Robot Performance and Experiments -- 4.5 MIMO ILC System and Error Contraction -- 4.6 Clean System Inversion ILC -- 4.7 System Hermitian ILC -- 4.8 An Example of Robot Joints and Experiments -- 4.9 Conclusion -- References -- 5 Wavelet Transform Based Frequency Tuning ILC -- [DELETE] -- 5.1 Wavelet Packet Algorithm for Error Analysis -- 5.1.1 Wavelet Packet Algorithm -- 5.1.2 Error Analysis Using Wavelet Packet Algorithm -- 5.2 Cutoff Frequency Tuning ILC -- 5.2.1 Cutoff Frequency Tuning Scheme -- 5.2.2 Design of Zero-Phase Low-Pass Filter -- 5.3 Time-Frequency Domain Analysis -- 5.4 Case Study of Frequency Tuning ILC -- 5.4.1 Determination of Learning Gain -- 5.4.2 Determination of Lead Step -- 5.4.3 Determination of Decomposition Level -- 5.4.4 Experimental Results -- 5.5 Conclusion -- References -- 6 Learning Transient Performance with Cutoff-Frequency Phase-In -- [DELETE] -- 6.1 Upper Bound of Trajectory Length for Good Learning Transient -- 6.2 Cutoff-Frequency Phase-In Method -- 6.3 Sliding Cutoff-Frequency Phase-In Method -- 6.4 Robot Case Study with Experimental Results -- 6.4.1 Parameter Selection -- 6.4.2 Overcoming Initial Position Offset -- 6.4.3 Improving Tracking Accuracy -- 6.5 Conclusion -- References -- 7 Pseudo-Downsampled ILC -- 7.1 Downsampled Learning -- 7.1.1 Pseudo-Downsampled ILC -- 7.1.2 Two-Mode ILC -- 7.2 Learning Data Processing -- 7.2.1 Signal Extension -- 7.2.2 Anti-aliasing Filtering and Anti-imaging Filtering -- 7.2.3 Simulation Results -- 7.3 Convergence Analysis -- 7.3.1 Convergence of Pseudo-Downsampled ILC -- 7.3.2 Convergence Analysis of Two-Mode ILC -- 7.4 Experimental Study of Downsampled ILC -- 7.4.1 Parameter Selection. , 7.4.2 Experimental Study of Two-Mode ILC -- 7.5 Conclusion -- References -- 8 Cyclic Pseudo-Downsampled ILC -- 8.1 Cyclic Pseudo-Downsampling ILC -- 8.2 Convergence and Robustness Analysis -- 8.3 Robot Application -- 8.3.1 Parameter Selection -- 8.3.2 Experiment of Cyclic Pseudo-Downsampled ILC -- 8.4 Conclusion -- References -- 9 Possible Future Research -- A A Robotic Test-Bed for Iterative Learning Control -- A.1 Hardware System -- A.1.1 Connections -- A.1.2 Non-Dynamic Parameters -- A.2 Software Platform for ILC -- A.2.1 Two-Level Software Architecture -- A.2.2 Simulink Diagrams -- A.3 Data Monitoring and Parameter Tuning via GUI -- A.4 Conclusion -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0983
    Keywords: Key wordsMAL-activator ; Constitutive mutations ; Maltose fermentation ; Saccharomyces
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The Saccharomyces MAL-activator regulates the maltose-inducible expression of the MAL structural genes encoding maltose permease and maltase. Constitutive MAL-activator mutant alleles of two types were identified. The first were truncation mutations deleting C-terminal residues 283–470 and the second contained a large number of alterations compared to inducible alleles scattered throughout the C-terminal 200 residues. We used site-directed in vitro mutagenesis of the inducible MAL63 and MAL63/23 genes to identify the residues responsible for the negative regulatory function of the C-terminal domain. Intragenic suppressors that restored the inducible phenotype to the constitutive mutants were identified at closely linked and more distant sites within the MAL-activator protein. MAL63/mal64 fusions of the truncated mutants suggest that residues in the N-terminal 100 residues containing the DNA-binding domain also modulate basal expression. Moreover, a transcription activator protein consisting of LexA(1–87)-Gal4(768–881)-Mal63(200–470) allowed constitutive reporter gene expression, suggesting that the C-terminal regulatory domain is not sufficient for maltose-inducible control of this heterologous activation domain. These results suggest that complex and very specific intramolecular protein–protein interactions regulate the MAL-activator.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...