GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-11-10
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in [citation], doi:[doi]. Gommenginger, C., Chapron, B., Hogg, A., Buckingham, C., Fox-Kemper, B., Eriksson, L., Soulat, F., Ubelmann, C., Ocampo-Torres, F., Nardelli, B. B., Griffin, D., Lopez-Dekker, P., Knudsen, P., Andersen, O., Stenseng, L., Stapleton, N., Perrie, W., Violante-Carvalho, N., Schulz-Stellenfleth, J., Woolf, D., Isern-Fontanet, J., Ardhuin, F., Klein, P., Mouche, A., Pascual, A., Capet, X., Hauser, D., Stoffelen, A., Morrow, R., Aouf, L., Breivik, O., Fu, L., Johannessen, J. A., Aksenov, Y., Bricheno, L., Hirschi, J., Martin, A. C. H., Martin, A. P., Nurser, G., Polton, J., Wolf, J., Johnsens, H., Soloviev, A., Jacobs, G. A., Collard, F., Groom, S., Kudryavtsev, V., Wilkin, J., Navarro, V., Babanin, A., Martin, M., Siddorn, J., Saulter, A., Rippeth, T., Emery, B., Maximenko, N., Romeiser, R., Graber, H., Azcarate, A. A., Hughes, C. W., Vandemark, D., da Silva, J., Van Leeuwen, P. J., Naveira-Garabato, A., Gemmrich, J., Mahadevan, A., Marquez, J., Munro, Y., Doody, S., & Burbidge, G. SEASTAR: A mission to study ocean submesoscale dynamics and small-scale atmosphere-ocean processes in coastal, shelf and polar seas. Frontiers in Marine Science, 6, (2019):457, doi:10.3389/fmars.2019.00457.
    Description: High-resolution satellite images of ocean color and sea surface temperature reveal an abundance of ocean fronts, vortices and filaments at scales below 10 km but measurements of ocean surface dynamics at these scales are rare. There is increasing recognition of the role played by small scale ocean processes in ocean-atmosphere coupling, upper-ocean mixing and ocean vertical transports, with advanced numerical models and in situ observations highlighting fundamental changes in dynamics when scales reach 1 km. Numerous scientific publications highlight the global impact of small oceanic scales on marine ecosystems, operational forecasts and long-term climate projections through strong ageostrophic circulations, large vertical ocean velocities and mixed layer re-stratification. Small-scale processes particularly dominate in coastal, shelf and polar seas where they mediate important exchanges between land, ocean, atmosphere and the cryosphere, e.g., freshwater, pollutants. As numerical models continue to evolve toward finer spatial resolution and increasingly complex coupled atmosphere-wave-ice-ocean systems, modern observing capability lags behind, unable to deliver the high-resolution synoptic measurements of total currents, wind vectors and waves needed to advance understanding, develop better parameterizations and improve model validations, forecasts and projections. SEASTAR is a satellite mission concept that proposes to directly address this critical observational gap with synoptic two-dimensional imaging of total ocean surface current vectors and wind vectors at 1 km resolution and coincident directional wave spectra. Based on major recent advances in squinted along-track Synthetic Aperture Radar interferometry, SEASTAR is an innovative, mature concept with unique demonstrated capabilities, seeking to proceed toward spaceborne implementation within Europe and beyond.
    Description: CG and AM received funding from the United Kingdom Centre for Earth Observation Instrumentation SEASTAR+ project (Contract No. RP10G0435A02). PVL was supported by the European Research Council (ERC) CUNDA project 694509 under the European Union Horizon 2020 Research and Innovation Program.
    Keywords: Satellite ; Air sea interactions ; Upper ocean dynamics ; Submesoscale ; Coastal ; Marginal ice zone ; Radar ; Along-track interferometry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 27–59, doi:10.1002/2015JC011299.
    Description: Pacific Water (PW) enters the Arctic Ocean through Bering Strait and brings in heat, fresh water, and nutrients from the northern Bering Sea. The circulation of PW in the central Arctic Ocean is only partially understood due to the lack of observations. In this paper, pathways of PW are investigated using simulations with six state-of-the art regional and global Ocean General Circulation Models (OGCMs). In the simulations, PW is tracked by a passive tracer, released in Bering Strait. Simulated PW spreads from the Bering Strait region in three major branches. One of them starts in the Barrow Canyon, bringing PW along the continental slope of Alaska into the Canadian Straits and then into Baffin Bay. The second begins in the vicinity of the Herald Canyon and transports PW along the continental slope of the East Siberian Sea into the Transpolar Drift, and then through Fram Strait and the Greenland Sea. The third branch begins near the Herald Shoal and the central Chukchi shelf and brings PW into the Beaufort Gyre. In the models, the wind, acting via Ekman pumping, drives the seasonal and interannual variability of PW in the Canadian Basin of the Arctic Ocean. The wind affects the simulated PW pathways by changing the vertical shear of the relative vorticity of the ocean flow in the Canada Basin.
    Description: National Science Foundation (NSF). Grant Numbers: PLR-0806306 , PLR-85653100 , PLR-82486400 , PLR-1313614; NASA Advanced Supercomputing (NAS) Division; JPL Supercomputing and Visualization Facility (SVF) Grant Numbers: ARC-0806306 , ARC-85653100 , ARC-82486400; Russian Foundation of Basic Research; Ministry of the Education and Science of the Russian Federation; UK Natural Environment Research Council Grant Number: NE/I028947/
    Keywords: Arctic Ocean ; Beaufort Gyre ; Pacific Water ; Ocean dynamics ; Wind forcing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...