GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-03-26
    Description: Background— Circulating branched-chain amino acids and aromatic amino acids were recently related to insulin resistance and diabetes mellitus in prospective cohorts. We tested the effects of a genetic determinant of branched-chain amino acid/aromatic amino acid ratio on changes in body weight and insulin resistance in a 2-year diet intervention trial. Methods and Results— We genotyped the branched-chain amino acid/aromatic amino acid ratio—associated variant rs1440581 near the PPM1K gene in 734 overweight or obese adults who were assigned to 1 of 4 diets varying in macronutrient content. At 6 months, dietary fat significantly modified genetic effects on changes in weight, fasting insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) after adjustment for the confounders (all P for interaction ≤0.006). Further adjustment for weight change did not appreciably change the interactions for fasting insulin and HOMA-IR. In the high-fat diet group, the C allele was related to less weight loss and smaller decreases in serum insulin and HOMA-IR (all P ≤ 0.02 in an additive pattern), whereas an opposite genotype effect on changes in insulin and HOMA-IR was observed in the low-fat diet group ( P =0.02 and P =0.04, respectively). At 2 years, the gene-diet interactions remained significant for weight loss ( P =0.008) but became null for changes in serum insulin and HOMA-IR resulting from weight regain. Conclusions— Individuals carrying the C allele of the branched-chain amino acid/aromatic amino acid ratio—associated variant rs1440581 may benefit less in weight loss and improvement of insulin sensitivity than those without this allele when undertaking an energy-restricted high-fat diet. Clinical Trial Registration— URL: http://www.clinicaltrials.gov . Unique identifier: NCT00072995.
    Keywords: Clinical genetics, Epidemiology
    Electronic ISSN: 1524-4539
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-08-03
    Description: Dysregulation of cyclin-dependent kinase 4 (CDK4) and CDK6 by gain of function or loss of inhibition is common in human cancer, including multiple myeloma, but success in targeting CDK with broad-spectrum inhibitors has been modest. By selective and reversible inhibition of CDK4/CDK6, we have developed a strategy to both inhibit proliferation and enhance cytotoxic killing of cancer cells. We show that induction of prolonged early-G 1 arrest ( pG1 ) by CDK4/CDK6 inhibition halts gene expression in early-G 1 and prevents expression of genes programmed for other cell-cycle phases. Removal of the early-G 1 block leads to S-phase synchronization ( pG1-S ) but fails to completely restore scheduled gene expression. Consequently, the IRF4 protein required to protect myeloma cells from apoptosis is markedly reduced in pG1 and further in pG1-S in response to cytotoxic agents, such as the proteasome inhibitor bortezomib. The coordinated loss of IRF4 and gain of Bim sensitize myeloma tumor cells to bortezomib-induced apoptosis in pG1 in the absence of Noxa and more profoundly in pG1-S in cooperation with Noxa in vitro. Induction of pG1 and pG1-S by reversible CDK4/CDK6 inhibition further augments tumor-specific bortezomib killing in myeloma xenografts. Reversible inhibition of CDK4/CDK6 in sequential combination therapy thus represents a novel mechanism-based cancer therapy.
    Keywords: Lymphoid Neoplasia
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...