GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 121 (2016): 2369–2389, doi:10.1002/2015JG003311.
    Description: We analyzed 20 years (1993–2013) of observations of dissolved inorganic macronutrients (nitrate, N; phosphate, P; and silicate, Si) and chlorophyll a (Chl) at Palmer Station, Antarctica (64.8°S, 64.1°W) to elucidate how large-scale climate and local physical forcing affect the interannual variability in the seasonal phytoplankton bloom and associated drawdown of nutrients. The leading modes of nutrients (N, P, and Si empirical orthogonal functions 1, EOF1) represent overall negative anomalies throughout growing seasons, showing a mixed signal of variability in the initial levels and drawdown thereafter (low-frequency dynamics). The second most common seasonal patterns of nitrate and phosphate (N and P EOF2) capture prolonged drawdown events during December–March, which are correlated to Chl EOF1. Si EOF2 captures a drawdown event during November–December, which is correlated to Chl EOF2. These different drawdown patterns are shaped by different sets of physical and climate forcing mechanisms. N and P drawdown events during December–March are influenced by the winter and spring Southern Annular Mode (SAM) phase, where nutrient utilization is enhanced in a stabilized upper water column as a consequence of SAM-driven winter sea ice and spring wind dynamics. Si drawdown during November–December is influenced by early sea ice retreat, where ice breakup may induce abrupt water column stratification and a subsequent diatom bloom or release of diatom cells from within the sea ice. Our findings underscore that seasonal nutrient dynamics in the coastal WAP are coupled to large-scale climate forcing and related physics, understanding of which may enable improved projections of biogeochemical responses to climate change.
    Description: U.S. National Science Foundation Grant Numbers: OPP-9011927, 9632763, 0217282, 0823101, GEO-PLR 1440435; NASA ROSES Grant Number: NNX14AL86G
    Description: 2017-03-17
    Keywords: Nutrient drawdown ; Phytoplankton bloom ; Climate variability ; Western Antarctic Peninsula ; Palmer LTER ; Biogeochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Ecology Progress Series 524 (2015): 11-26, doi:10.3354/meps11189.
    Description: The western Antarctic Peninsula is experiencing dramatic climate change as warm, wet conditions expand poleward and interact with local physics and topography, causing differential regional effects on the marine ecosystem. At local scales, deep troughs (or canyons) bisect the continental shelf and act as conduits for warm Upper Circumpolar Deep Water, with reduced seasonal sea ice coverage, and provide a reservoir of macro- and micronutrients. Shoreward of many canyon heads are Adélie penguin breeding colonies; it is hypothesized that these locations reflect improved or more predictable access to higher biological productivity overlying the canyons. To synoptically assess the potential impacts of regional bathymetry on the marine ecosystem, 4 major canyons were identified along a latitudinal gradient west of the Antarctic Peninsula using a high-resolution bathymetric database. Biological-physical dynamics above and adjacent to canyons were compared using in situ pigments and satellite-derived sea surface temperature, sea ice and ocean color variables, including chlorophyll a (chl a) and fucoxanthin derived semi-empirically from remote sensing reflectance. Canyons exhibited higher sea surface temperature and reduced sea ice coverage relative to adjacent shelf areas. In situ and satellite-derived pigment patterns indicated increased total phytoplankton and diatom biomass over the canyons (by up to 22 and 35%, respectively), as well as increases in diatom relative abundance (fucoxanthin:chl a). While regional heterogeneity is apparent, canyons appear to support a phytoplankton community that is conducive to both grazing by krill and enhanced vertical export, although it cannot compensate for decreased biomass and diatom relative abundance during low sea ice conditions.
    Description: We acknowledge support from the National Aeronautics and Space Administration Ocean Bio - logy and Biogeochemistry Program (NNX14AL86G) and the National Science Foundation Polar Programs awards 0823101 (Antarctic Organisms and Ecosystems Program) and 1440435 (Antarctic Integrated System Science) to the Palmer LTER program.
    Keywords: Western Antarctic Peninsula ; Canyons ; Phytoplankton ; Diatoms ; Remote sensing ; Adélie penguin habitat ; Sea ice
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © Inter-Research, 2010. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Aquatic Microbial Ecology 58 (2010): 229-239, doi:10.3354/ame01374.
    Description: The regulation of heterotrophic bacterial growth by resource supply (bottom-up control) was temperature-dependent in our analysis of data obtained during 2006 in the euphotic layer of the southern Bay of Biscay (NE Atlantic) continental shelf. The dataset was split into 2 subgroups using 16°C as the boundary between warm and cool waters based on differences in associated physico-chemical conditions, e.g. inorganic nutrient limitation at higher temperatures. The linear regressions between bacterial biomass (BB) and leucine incorporation rates (LIR) were significantly positive in both temperature regimes, thus indicating similar total bottom-up control, albeit with a slightly higher slope in warm waters (0.33 vs. 0.22). However, the relationship of LIR with phytoplankton biomass (chl a), which is an indicator of bottom-up control that is mediated by phytoplankton, was only significant in waters below 16°C. The analysis of bimonthly variations in the BB-LIR and LIR-chl a correlations indicated that the strength of total bottom-up control significantly increased while the role of phytoplankton in supplying DOM to bacteria diminished with mean temperatures over the 12 to 19°C range, suggesting a seasonal switch in the major source of substrates used by bacteria. We show that the abundance of cells with relatively high nucleic acid content (HNA), which are hypothesized to be the most active ones, was positively associated with bacterial production and specific growth rates in cool but not in warm conditions. These results suggest that HNA bacteria are good predictors of bulk activity and production in temperate ecosystems only when the community relies principally on phytoplankton substrates for growth and metabolism.
    Description: X.A.G.M. was partially supported by a sabbatical grant at the MBL from the Spanish Ministry of Education and Science (MEC) and A.C.-D. received an FPI research training predoctoral fellowhip. This work was supported by the time-series project RADIALES from the Instituto Espanol de Oceanografia (IEO).
    Keywords: Bacterioplankton ; Bottom-up control ; Temperature ; Bacterial biomass ; Bacterial activity ; Phytoplankton ; Coastal waters
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 115 (2010): C03024, doi:10.1029/2009JC005267.
    Description: The Southern Ocean is a climatically sensitive region that plays an important role in the regional and global modulation of atmospheric CO2. Based on satellite-derived sea ice data, wind and cloudiness estimates from numerical models (National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis), and in situ measurements of surface (0–20 m depth) chlorophyll a (ChlSurf) and dissolved inorganic carbon (DICSurf) concentration, we show sea ice concentration from June to November and spring wind patterns between 1979 and 2006 had a significant influence on midsummer (January) primary productivity and carbonate chemistry for the Western Shelf of the Antarctic Peninsula (WAP, 64°–68°S, 63.4°–73.3°W). In general, strong (〉3.5 m s−1) and persistent (〉2 months) northerly winds during the previous spring were associated with relatively high (monthly mean 〉 2 mg m−3) ChlSurf and low (monthly mean 〈 2 mmol kg−1) salinity-corrected DIC (DICSurf*) during midsummer. The greater ChlSurf accumulation and DICSurf* depletion was attributed to an earlier growing season characterized by decreased spring sea ice cover or nearshore accumulation of phytoplankton in association with sea ice. The impact of these wind-driven mechanisms on ChlSurf and DICSurf* depended on the extent of sea ice area (SIA) during winter. Winter SIA affected phytoplankton blooms by changing the upper mixed layer depth (UMLD) during the subsequent spring and summer (December–January–February). Midsummer DICSurf* was not related to DICSurf* concentration during the previous summer, suggesting an annual replenishment of surface DIC during fall/winter and a relatively stable pool of deep (〉200 m depth) “winter-like” DIC on the WAP.
    Description: This research was supported by NSF OPP grants 0217282 to HWD at the Virginia Institute of Marine Science and 0823101 to HWD at the MBL.
    Keywords: Climate variability ; Antarctica ; Carbonate system
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 26 (2012): GB2005, doi:10.1029/2010GB004028.
    Description: In connection with the Palmer LTER program, mixed layer water samples were collected during the cruise of the L.M. Gould in Jan., 2008 at 49 stations on a 20 × 100 km grid in the West Antarctica Peninsula (WAP) region of the Southern Ocean. In this study, [O2]/[Ar] ratios and the triple isotope composition of dissolved O2 were measured, and were used to estimate net community O2 production (NCP) and gross primary O2 production (GPP), respectively. These estimates are further converted to carbon export production, primary production and the f-ratio. Our measurements give NCP ranging from −3 to 76 mmol O2 m−2 day−1 (−25 to 650 mg C m−2 day−1), and GPP from 40 to 220 mmol O2 m−2 day−1 (180 to 1010 mg C m−2 day−1). The O2 NCP/GPP ratios range from −0.04 to 0.43, corresponding to f-ratios of −0.08 to 0.83. NCP and the NCP/GPP ratio are highest in the northern coastal areas, and decrease to lower values toward the southern coastal area and the open ocean. The inshore-offshore gradient appears to be regulated primarily by iron availability, as supported by the positive correlation between NCP and Fv/Fm ratios (r2 = 0.22, p 〈 0.05). Mixed layer depth (MLD) is inversely correlated with NCP (r2 = 0.21, p 〈 0.002) and NCP/GPP (r2 = 0.21, p 〈 0.02), and highest NCP occurred in the fresh water lenses probably formed from melted coastal glaciers. These results suggest that export production and the f-ratio increase where water stratification is intensified by input of fresh meltwater, and that mixed layer stratification is the major factor regulating NCP in the inner-shelf and coastal regions. Along-shelf variability of phytoplankton community composition is highly correlated with NCP, i.e., NCP increases when the diatom-dominated community in the south transitions to the cryptophyte-dominated one in the north. A high correlation is also observed between NCP and the logarithm of the surface chlorophyll concentration (r2 = 0.72, p 〈 0.0001) , which makes it possible to estimate carbon export as a function of Chl a concentration in this region.
    Description: This research was supported by NSF-OPP grant 0823101 to Ducklow and NASA Earth and Space Sciences Fellowship to Huang.
    Description: 2012-10-24
    Keywords: Southern Ocean ; Chlorophyll ; Gross primary production ; Net community production ; Oxygen isotopes ; Phytoplankton
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: image/tiff
    Format: text/plain
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...