GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 137 (1984), S. 247-249 
    ISSN: 1432-072X
    Keywords: Rothia dentocariosa ; Fatty acids ; Menaquinones ; Polar lipids ; Chemotaxonomy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The lipid compositions of Rothia dentocariosa was investigated. All of the strains tested possessed closely related lipid profiles consisting of predominantly straight-chain saturated and methyl branched long-chain fatty acids, unsaturated menaquinones with seven isoprene units and a polar lipid composition comprising diphosphatidylglycerol, phosphatidylglycerol and a diglycosyldiacylglycerol. The results of the present study indicate Rothia dentocariosa is a good and distinct taxon. The lipid data however does not support the classification of Rothia dentocariosa in the family Actinomycetaceae.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © The Authors, 2017. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 75 (2017): 361-402, doi:10.1357/002224017821836770.
    Description: Key aspects of the current state of the ability of global and regional climate models to represent dynamical processes and precipitation variations are summarized. Interannual, decadal, and global-warming timescales, wherein the influence of the oceans is relevant and the potential for predictability is highest, are emphasized. Oceanic influences on climate occur throughout the ocean and extend over land to affect many types of climate variations, including monsoons, the El Niño Southern Oscillation, decadal oscillations, and the response to greenhouse gas emissions. The fundamental ideas of coupling between the ocean-atmosphere-land system are explained for these modes in both global and regional contexts. Global coupled climate models are needed to represent and understand the complicated processes involved and allow us to make predictions over land and sea. Regional coupled climate models are needed to enhance our interpretation of the fine-scale response. The mechanisms by which large-scale, low-frequency variations can influence shorter timescale variations and drive regionalscale effects are also discussed. In this light of these processes, the prospects for practical climate predictability are also presented.
    Description: AJMwas supported by theNSFEarth System Modeling Program (OCE1419306) and the NOAA Climate Variability and Prediction Program (NA14OAR4310276). HS thanks the Office of Naval Research for support under N00014-15-1-2588. LPP was supported by “Advanced Studies in Medium and High Latitudes Oceanography” (CAPES 23038.004304/2014-28) and “National Institute of Science andTechnology of the Cryosphere” (CNPq/PROANTAR704222/2009). VM was supported by NOAA grant NA12OAR4310078. TGJ was supported by the U. S. Naval Research Laboratory 6.2 project “Fresh Water Balance in the Coupled Ocean-Atmosphere System” (BE-435-040-62435N-6777) YHT was supported by the MOST grant 106-2111-M-002-001, Taiwan.
    Keywords: Climate modeling ; Climate predictability ; Decadal climate variability ; El Niño Southern Oscillation ; ENSO ; Global warming ; Monsoons ; Ocean-atmospherel and interactions ; Regional climate downscaling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...