GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 20 (1974), S. 600-602 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 17 (1977), S. 32-37 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A forced torsional oscillator (FTO) for measuring dynamic properties from 0.01 to 30 Hz and -190 to +250°C is described. It uses a digital transfer function analyzer to determine G′ and G″ directly. Errors such as clamping corrections, phase angle resolution, and instrument phase shift are evaluated. FTO measurements vs temperature on polymethylmethacrylate (PMMA) and polycarbonate compare well with free torsion pendulum data. Measurements on a silicone liquid vs frequency compare well to eccentric rotating disks data. The frequency sensitivity of the dynamic mechanical response of PMMA and polycarbonate is evaluated at 0.1, 1 and 10 Hz. The frequency dependence of the transitions is fit to an Arrhenius relation and activation energies calculated. A dimensionless transition temperature shift, ΔT*, giving the shift for a one decade frequency change divided by the temperature, is found to be approximately 0.01 for the glass transition and 0.07 for several secondary transitions in glassy polymers.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...