GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Charging compensator  (1)
  • K outward currents  (1)
  • 1
    ISSN: 1432-2013
    Keywords: cAMP ; Slow inward current ; Phasic tension ; Tonic tension ; K outward currents
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Previously, we reported that concentration jumps of cAMP produced by light flashes in the presence of a photosensitive analogue of cAMP increase the amplitude of the slow inward current (Isi) in isolated bullfrog atrial trabeculae (Nargeot et al. 1983). Here, using newly designed photolabile cyclic nucleotides (Nerbonne et al. 1984a), we have examined the effects of intracellular concentration jumps of cAMP and cGMP on excitation-contraction coupling in frog heart. Concentration jumps of cAMP increase the amplitude and the duration of action potentials, increase Isi and twitch tension. Following single flashes, maximum responses are observed in 10–30 s and recovery times are 30–120 s. The time courses of the cAMP-induced increases in Isi and phasic tension amplitudes are parallel, implying a direct correlation between Ca2+ influx through the slow channels and the development of phasic tension. Although the amplitudes are increased severalfold, cAMP jumps do not measurably alter the kinetics or voltage dependences of the current or tension. cAMP concentration jumps increase the delayed K+ current (IK) and decrease tonic tension; relaxation of contraction is not, however, influenced by cAMP jumps. Concentration jumps of cGMP, on the other hand, have no measurable effects on the action potential, Isi, IK or tension in this preparation.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 426 (1994), S. 453-458 
    ISSN: 1432-2013
    Keywords: Agarose-cushion electrodes ; Charging compensator ; Two-electrode voltage clamp ; Xenopus laevis oocytes ; Ion channel modulation ; Heterologous expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Two-electrode voltage clamping of expressed ion channels in intact oocytes of the South African clawed frog Xenopus laevis has been refined to allow stable, low-resistance electrical access to the cytosol (50–800 kΩ). Glass microelectrodes were filled with a cushion of 1 % agarose at their tips to prevent KC1 leakage (agarose-cushion electrodes). Insertion of these electrodes into X. laevis oocytes yielded stable preparations for periods of more than l h with a stable input resistance of 1–4MΩ. Furthermore, a simple modification of the voltage-clamp circuit (charging compensator) is described that increases the flexibility of arrangements for differential recording of the membrane potential in order to subtract voltage drops across a series resistance. The result is a considerable increase in the practically attainable speed of the voltage clamp with the conventional two-electrode arrangement. The performance of the charging compensator was tested on an equivalent circuit that simulates the oocyte and electrodes. In addition, the combination of agarose-cushion electrodes and the charging compensator was tested on oocytes expressing Shaker H4 currents. The fidelity of the voltageclamp circuit was also verified by measuring the membrane potential with additional independent microelectrodes connected to a differential amplifier, independent of the two-electrode voltage clamp system. The system described here will be useful for ion channel studies in X. laevis oocytes requiring long-term recordings and/or measurements of large, fast ion currents.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...