GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell wall growth  (1)
  • Microtubules(techniques)  (1)
  • 1
    ISSN: 1432-2048
    Keywords: Cytoskeleton ; Dithiothreitol ; Fluorescencemicroscopy ; Immuno cytochemistry ; Microtubules(techniques)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Microtubules are important in plant growth and development. Localizing microtubules in sectioned material is advantageous because it allows any tissue of interest to be studied and it permits the positional relations of the cells within the organ to be known. We describe here a method that uses semi-thin (0.5–2 μm) sections of material embedded in butyl-methylmethacrylate, to which 10 mM dithiothreitol was added. After removing the embedding material and using indirect immunofluorescence staining, we obtain clear images of microtubules, actin microfilaments, callose and pulse-fed bromodeoxyuridine. This method works on the root tissues of Arabidopsis thaliana(L.) Heynh, Pinus radiataD. Don, Zamia furfuraceaAit., Azolla pinnataR. Br. and on sporophytic tissues of Funaria hygrometricaHedw. In general, most of the cells in the organs studied are successfully stained. Using this method, we find that interphase meristematic cells in all of these species have microtubules not only in the usual cortical array but also throughout their cytoplasm. The presence of the calcium chelator ethylene glycol-bis(β-aminoethyl ether)N,N,N′,N′-tetraacetic acid EGTA in fixation buffers led to some tissue damage, and did not enhance the preservation of microtubules. The common assumption that EGTA-containing buffers stabilize plant microtubules during fixation appears unwarranted.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Auxin and elongation growth ; Epidermis ; Interference microscopy ; Cell wall growth ; Pisum (auxin and cell-wall growth)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effect of auxin on the mass per area in the outer epidermal walls of third internodes of Pisum sativum L. cv. Alaska grown in dim red light was investigated using interference microscopy, and rates of net deposition of wall material were calculated. Examination of these net rates under different growth conditions showed that there is no simple relationship between the deposition of mass and growth. Net deposition can be proportional to growth when sufficient substrate for wall synthesis is available, as in intact plants, and in segments treated with indole-3-acetic acid (IAA) plus glucose. Net deposition can cause thickening of the walls when growth is small, as in the case of segments kept without IAA in the presence or absence of glucose, or segments whose growth is inhibited with mannitol. When substrate is limited and growth is large, however, wall expansion can occur with no net deposition, or an actual net loss of wall material can even take place. Auxin appears to induce a breakdown in the walls of segments treated in the absence of glucose, although it promotes synthesis when glucose is present. It is likely that IAA always induces a breakdown of wall material, but that the breakdown is masked when substrate is available for synthesis. Our results indicate that pea epidermal cells have two different auxin-stimulated mechanisms, wall synthesis and wall breakdown, potentially available to loosen their outer epidermal walls to bring about cell enlargement, alternatives which could be employed to different extents depending on substrate conditions.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...