GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell Biology/Structural Biology, Endothelium/Vascular Type/Nitric Oxide, Gene Therapy, Smooth Muscle Proliferation and Differentiation, Gene Expression & Regulation  (1)
Document type
Keywords
Years
  • 1
    Publication Date: 2016-06-23
    Description: Objective— Vascular smooth muscle cell (VSMC) phenotype change is a hallmark of vascular remodeling, which contributes to atherosclerotic diseases and can be regulated via microRNA-dependent mechanisms. We recently identified that asymmetrical dimethylarginine positively correlates to vascular remodeling–based diseases. We hypothesized that asymmetrical dimethylarginine induces smooth muscle cell (SMC) phenotypic change via a microRNA-dependent mechanism. Approach and Results— Microarray analysis enabled the identification of downregulation of miR-182-3p in asymmetrical dimethylarginine–treated human aortic artery SMCs. The myeloid-associated differentiation marker (MYADM) was identified as the downstream target of miR-182-3p and implicated to contribute to miR-182-3p knockdown–mediated SMC phenotype change, which was evidenced by the increased proliferation and migration and reduced expression levels of phenotype-related genes in human aortic artery SMCs through the ERK/MAP (extracellular signal-regulated kinase/mitogen-activated protein) kinase–dependent mechanism. When inhibiting MYADM in the presence of miR-182-3p inhibitor or overexpressing MYADM in the presence of pre-miR-182-3p, human aortic artery SMCs were reversed to the differentiation phenotype. In vivo, adeno-miR-182-3p markedly suppressed carotid neointimal formation by using balloon-injured rat carotid artery model, specifically via decreased MYADM expression, whereas adeno-miR-182-3p inhibitor significantly promoted neointimal formation. Atherosclerotic lesions from patients with high asymmetrical dimethylarginine plasma levels exhibited decreased miR-182-3p expression levels and elevated MYADM expression levels. Conclusions— miR-182-3p is a novel SMC phenotypic modulator by targeting MYADM .
    Keywords: Cell Biology/Structural Biology, Endothelium/Vascular Type/Nitric Oxide, Gene Therapy, Smooth Muscle Proliferation and Differentiation, Gene Expression & Regulation
    Print ISSN: 1079-5642
    Electronic ISSN: 1524-4636
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...