GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Evolution  (2)
  • Cell & Developmental Biology  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of statistical physics 90 (1998), S. 191-210 
    ISSN: 1572-9613
    Keywords: Evolution ; birth/death processes ; mean-field ; population dynamics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The role of mutational bias in evolution on a smooth landscape is investigated. We consider both a finite-length genome where the bias increases linearly with the fitness, and an infinite genome with a fixed bias. We present simulations of finite populations in a waiting time model, showing both the nonequilibrium dynamics and the equilibrium fitness distributions that are reached. We compute the equilibrium analytically in several cases, using approximate direct solution of the master equations and truncated hierarchies.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of statistical physics 87 (1997), S. 519-544 
    ISSN: 1572-9613
    Keywords: Evolution ; birth/death processes ; mean-field ; population dynamics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We study in detail a recently proposed simple discrete model for evolution on smooth landscapes. An asymptotic solution of this model for long times is constructed. We find that the dynamics of the population is governed by correlation functions that although being formally down by powers ofN (the population size), nonetheless control the evolution process after a very short transient. The long-time behavior can be found analytically since only one of these higher order correlators (the two-point function) is relevant. We compare and contrast the exact findings derived herein with a previously proposed phenomenological treatment employing mean-field theory supplemented with a cutoff at small population density. Finally, we relate our results to the recently studied case of mutation on a totally flat landscape.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 156 (1993), S. 619-625 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Prior to morphologic and functional maturation, terminally differentiating hematopoietic cells first exit the cell cycle and undergo growth arrest. Relatively little is known about which molecules regulate differentiation-induced growth arrest. In the present report, we sought to determine whether the mammalian low molecular weight heat shock protein (hsp28) was a candidate growth-regulatory molecule during human hematopoiesis. To this end, hsp28 protein expression was examined during phorbol ester (PMA)-induced macrophage differentiation of the human HL-60 promyelocytic leukemic cell line. Whereas hsp28 was constitutively expressed at relatively low levels in an unphosphorylated state, hsp28 was rapidly phosphorylated within 4 hr following PMA-induced differentiation, preceding increased hsp28 protein levels at 24-48 h. In contrast to other differentiative agents, hsp28 steady state mRNA and protein were regulated concordantly in response to macrophage differentiation. More importantly, these changes were transient, and occurred concomitant with the down-regulation of cellular proliferation and the onset of G1 phase cell cycle arrest. In total, these observations implicate hsp28 as an intermediary in the myelomonocytic differentiative pathway of promyelocytic leukemic cells, and will shed light on the events regulating this process. © 1993 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...