GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • File content; Uniform resource locator/link to file; Uniform resource locator/link to image  (2)
  • Hochschulschrift  (2)
  • Carbon dioxide  (1)
Document type
Keywords
Language
Years
  • 1
    Keywords: Hochschulschrift
    Type of Medium: Book
    Pages: IV, 127, IV Bl , graph. Darst
    DDC: 570
    Language: English
    Note: Bremen, Univ., Diss., 2012
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Hochschulschrift
    Description / Table of Contents: Carbon cycle, ocean acidification, Antarctica, negative feedback, CO2 sink. - The Southern Ocean (SO) carbon cycle is and will be undergoing various changes in a high-CO2 world. This thesis analyzes two key processes: dissolution of carbonate sediments on Antarctic shelves and inter-annual variability of upper ocean carbon fluxes. In the first part of the thesis, the main question is whether dissolution of carbonate sediments from Antarctic shelves can be a negative feedback to ocean acidification. Patterns in the CaCO3 distribution are related to primary production in the overlying water column. Based on this relationship, the inventory of CaCO3 on all Antarctic shelves is calculated to be 4 Pg CaCO3. This suggests that dissolution of CaCO3 from the sediments will not delay acidification. The second process study addresses the inter-annual variability of carbon fluxes in the SO related to the Southern Annular Mode (SAM). The positive phase of the SAM is characterized by stronger upwelling of carbon and nutrient-rich deep water. The carbon content of the surface layer increases and more natural carbon is released to the atmosphere. South of the Polar Front, however, more CO2 is drawn down by stronger biological export production.
    Type of Medium: Online Resource
    Pages: Online-Ressource
    Language: English
    Note: Bremen, Univ., Diss., 2012
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hauck, Judith; Völker, Christoph (2015): Rising atmospheric CO2 leads to large impact of biology on Southern Ocean CO2 uptake via changes of the Revelle factor. Geophysical Research Letters, 42(5), 1459-1464, https://doi.org/10.1002/2015GL063070
    Publication Date: 2023-01-13
    Description: The Southern Ocean is a key region for global carbon uptake and is characterised by a strong seasonality with the annual CO2 uptake being mediated by biological carbon draw-down in summer. Here, we show that the contribution of biology to CO2 uptake will become even more important until 2100. This is the case even if biological production remains unaltered and can be explained by the decreasing buffer capacity of the ocean as its carbon content increases. The same amount of biological carbon draw-down leads to a more than twice as large reduction in CO2 (aq) concentration and hence to a larger CO2 gradient between ocean and atmosphere that drives the gas-exchange. While the winter uptake south of 44°S changes little, the summer uptake increases largely and is responsible for the annual mean response. The combination of decreasing buffer capacity and strong seasonality of biological carbon draw-down introduces a strong and increasing seasonality in the anthropogenic carbon uptake.
    Keywords: File content; Uniform resource locator/link to file; Uniform resource locator/link to image
    Type: Dataset
    Format: text/tab-separated-values, 15 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hauck, Judith; Völker, Christoph; Wolf-Gladrow, Dieter A; Laufkötter, Charlotte; Vogt, Meike; Aumont, Olivier; Bopp, Laurent; Buitenhuis, Erik Theodoor; Doney, Scott C; Dunne, John; Gruber, Nicolas; Hashioka, Taketo; John, Jasmin; Le Quéré, Corinne; Lima, Ivan D; Nakano, Hideyuki; Séférian, Roland; Totterdell, Ian J (2015): On the Southern Ocean CO2 uptake and the role of the biological carbon pump in the 21st century. Global Biogeochemical Cycles, 29(9), 1451-1470, https://doi.org/10.1002/2015GB005140
    Publication Date: 2023-01-13
    Description: We use a suite of eight ocean biogeochemical/ecological general circulation models from the MAREMIP and CMIP5 archives to explore the relative roles of changes in winds (positive trend of Southern Annular Mode, SAM) and in warming- and freshening-driven trends of upper ocean stratification in altering export production and CO2 uptake in the Southern Ocean at the end of the 21st century. The investigated models simulate a broad range of responses to climate change, with no agreement ona dominance of either the SAM or the warming signal south of 44° S. In the southernmost zone, i.e., south of 58° S, they concur on an increase of biological export production, while between 44 and 58° S the models lack consensus on the sign of change in export. Yet, in both regions, the models show an enhanced CO2 uptake during spring and summer. This is due to a larger CO 2 (aq) drawdown by the same amount of summer export production at a higher Revelle factor at the end of the 21st century. This strongly increases the importance of the biological carbon pump in the entire Southern Ocean. In the temperate zone, between 30 and 44° S all models show a predominance of the warming signal and a nutrient-driven reduction of export production. As a consequence, the share of the regions south of 44° S to the total uptake of the Southern Ocean south of 30° S is projected to increase at the end of the 21st century from 47 to 66% with a commensurable decrease to the north. Despite this major reorganization of the meridional distribution of the major regions of uptake, the total uptake increases largely in line with the rising atmospheric CO2. Simulations with the MITgcm-REcoM2 model show that this is mostly driven by the strong increase of atmospheric CO2, with the climate-driven changes of natural CO2 exchange offsetting that trend only to a limited degree (~10%) and with negligible impact of climate effects on anthropogenic CO2 uptake when integrated over a full annual cycle south of 30° S.
    Keywords: File content; Uniform resource locator/link to file; Uniform resource locator/link to image
    Type: Dataset
    Format: text/tab-separated-values, 27 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-26
    Description: Author Posting. © National Academy of Sciences, 2019. This article is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences 116 (24), (2019):11646-11651, doi:10.1073/pnas.1900371116.
    Description: Measurements show large decadal variability in the rate of CO2 accumulation in the atmosphere that is not driven by CO2 emissions. The decade of the 1990s experienced enhanced carbon accumulation in the atmosphere relative to emissions, while in the 2000s, the atmospheric growth rate slowed, even though emissions grew rapidly. These variations are driven by natural sources and sinks of CO2 due to the ocean and the terrestrial biosphere. In this study, we compare three independent methods for estimating oceanic CO2 uptake and find that the ocean carbon sink could be responsible for up to 40% of the observed decadal variability in atmospheric CO2 accumulation. Data-based estimates of the ocean carbon sink from pCO2 mapping methods and decadal ocean inverse models generally agree on the magnitude and sign of decadal variability in the ocean CO2 sink at both global and regional scales. Simulations with ocean biogeochemical models confirm that climate variability drove the observed decadal trends in ocean CO2 uptake, but also demonstrate that the sensitivity of ocean CO2 uptake to climate variability may be too weak in models. Furthermore, all estimates point toward coherent decadal variability in the oceanic and terrestrial CO2 sinks, and this variability is not well-matched by current global vegetation models. Reconciling these differences will help to constrain the sensitivity of oceanic and terrestrial CO2 uptake to climate variability and lead to improved climate projections and decadal climate predictions.
    Description: We thank Rebecca Wright and Erik Buitenhuis at University of East Anglia, Norwich, for providing updated runs from the NEMO-PlankTOM5 model. T.D. was supported by NSF Grant OCE-1658392. C.L.Q. thanks the UK Natural Environment Research Council for supporting the SONATA Project (Grant NE/P021417/1). P.L. was supported by the Max Planck Society for the Advancement of Science. J.H. was supported under Helmholtz Young Investigator Group Marine Carbon and Ecosystem Feedbacks in the Earth System (MarESys) Grant VH-NG-1301. S.B. and R.S. were supported by the H2020 project CRESCENDO “Coordinated Research in Earth Systems and Climate: Experiments, Knowledge, Dissemination and Outreach,” which received funding from the European Union’s Horizon 2020 research and innovation program under Grant No 641816. SOCAT is an international effort, endorsed by the International Ocean Carbon Coordination Project, the Surface Ocean-Lower Atmosphere Study, and the Integrated Marine Biosphere Research program, to deliver a uniformly quality-controlled surface ocean CO2 database. The many researchers and funding agencies responsible for the collection of data and quality control are thanked for their contributions to SOCAT.
    Description: 2019-11-28
    Keywords: Carbon dioxide ; Ocean carbon sink ; Terrestrial carbon sink ; Climate variability ; Carbon budget
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...