GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Carbon cycle  (2)
Document type
Keywords
Years
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 1425–1438, doi:10.1002/2016JC012162.
    Description: Understanding the physical and biogeochemical processes that control CO2 and dissolved oxygen (DO) dynamics in the Arctic Ocean (AO) is crucial for predicting future air-sea CO2 fluxes and ocean acidification. Past studies have primarily been conducted on the AO continental shelves during low-ice periods and we lack information on gas dynamics in the deep AO basins where ice typically inhibits contact with the atmosphere. To study these gas dynamics, in situ time-series data have been collected in the Canada Basin during late summer to autumn of 2012. Partial pressure of CO2 (pCO2), DO concentration, temperature, salinity, and chlorophyll-a fluorescence (Chl-a) were measured in the upper ocean in a range of sea ice states by two drifting instrument systems. Although the two systems were on average only 222 km apart, they experienced considerably different ice cover and external forcings during the 40–50 day periods when data were collected. The pCO2 levels at both locations were well below atmospheric saturation whereas DO was almost always slightly supersaturated. Modeling results suggest that air-sea gas exchange, net community production (NCP), and horizontal gradients were the main sources of pCO2 and DO variability in the sparsely ice-covered AO. In areas more densely covered by sea ice, horizontal gradients were the dominant source of variability, with no significant NCP in the surface mixed layer. If the AO reaches equilibrium with atmospheric CO2 as ice cover continues to decrease, aragonite saturation will drop from a present mean of 1.00 ± 0.02 to 0.86 ± 0.01.
    Description: U.S. National Science Foundation Arctic Observing Network Grant Number: ARC-1107346 and ARC-0856479
    Description: 2017-08-25
    Keywords: Arctic Ocean ; CO2 ; O2 ; Biogeochemistry ; Dynamics ; Carbon cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in DeGrandpre, M. D., Lai, C., Timmermans, M., Krishfield, R. A., Proshutinsky, A., & Torres, D. Inorganic carbon and pCO(2) variability during ice formation in the Beaufort Gyre of the Canada Basin. Journal of Geophysical Research-Oceans, 124(6), (2019): 4017-4028, doi:10.1029/2019JC015109.
    Description: Solute exclusion during sea ice formation is a potentially important contributor to the Arctic Ocean inorganic carbon cycle that could increase as ice cover diminishes. When ice forms, solutes are excluded from the ice matrix, creating a brine that includes dissolved inorganic carbon (DIC) and total alkalinity (AT). The brine sinks, potentially exporting DIC and AT to deeper water. This phenomenon has rarely been observed, however. In this manuscript, we examine a ~1 year pCO2 mooring time series where a ~35‐μatm increase in pCO2 was observed in the mixed layer during the ice formation period, corresponding to a simultaneous increase in salinity from 27.2 to 28.5. Using salinity and ice based mass balances, we show that most of the observed increases can be attributed to solute exclusion during ice formation. The resulting pCO2 is sensitive to the ratio of AT and DIC retained in the ice and the mixed layer depth, which controls dilution of the ice‐derived AT and DIC. In the Canada Basin, of the ~92 μmol/kg increase in DIC, 17 μmol/kg was taken up by biological production and the remainder was trapped between the halocline and the summer stratified surface layer. Although not observed before the mooring was recovered, this inorganic carbon was likely later entrained with surface water, increasing the pCO2 at the surface. It is probable that inorganic carbon exclusion during ice formation will have an increasingly important influence on DIC and pCO2 in the surface of the Arctic Ocean as seasonal ice production and wind‐driven mixing increase with diminishing ice cover.
    Description: Research Associate Cory Beatty (University of Montana) prepared the CO2 instruments and helped with the mooring deployments and data processing. Pierce Fix (undergraduate intern, University of Montana) helped with the mass balance modeling. The moorings were designed and deployed by personnel at Woods Hole Oceanographic Institution. Michiyo Yamamoto‐Kawai (University of Tokyo) and Marty Davelaar (Institute of Ocean Sciences; IOS) provided the alkalinity and dissolved inorganic carbon data. We thank the captain, officers, crew, and chief scientists (Bill Williams and Sarah Zimmerman, IOS) of the CCGS Louis S. St. Laurent. The data used in this study are available through the U.S. National Science Foundation (NSF) Arctic Data Center (https://arcticdata.io). This research was made possible by grants from the NSF Arctic Observing Network program (ARC‐1107346, PLR‐1302884, PLR‐1504410, and PLR‐1723308).
    Keywords: Sea ice ; Dissolved inorganic carbon ; Carbon cycle ; Solute exclusion ; Partial pressure of CO2 ; Arctic Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...