GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 45 (2018): 4171-4179, doi:10.1029/2017GL076498.
    Description: Estimated rates and efficiency of ocean carbon export flux are sensitive to differences in the depth horizons used to define export, which often vary across methodological approaches. We evaluate sinking particulate organic carbon (POC) flux rates and efficiency (e‐ratios) in a global earth system model, using a range of commonly used depth horizons: the seasonal mixed layer depth, the particle compensation depth, the base of the euphotic zone, a fixed depth horizon of 100 m, and the maximum annual mixed layer depth. Within this single dynamically consistent model framework, global POC flux rates vary by 30% and global e‐ratios by 21% across different depth horizon choices. Zonal variability in POC flux and e‐ratio also depends on the export depth horizon due to pronounced influence of deep winter mixing in subpolar regions. Efforts to reconcile conflicting estimates of export need to account for these systematic discrepancies created by differing depth horizon choices.
    Description: Woods Hole Oceanographic Institution (WHOI); National Science Foundation Grant Number: OCE‐1434000
    Description: 2018-10-23
    Keywords: Carbon ; Export ; Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Global Biogeochemical Cycles 28 (2014): 1295–1310, doi:10.1002/2014GB004890.
    Description: The response of the carbon cycle in prognostic Earth system models (ESMs) contributes significant uncertainty to projections of global climate change. Quantifying contributions of known drivers of interannual variability in the growth rate of atmospheric carbon dioxide (CO2) is important for improving the representation of terrestrial ecosystem processes in these ESMs. Several recent studies have identified the temperature dependence of tropical net ecosystem exchange (NEE) as a primary driver of this variability by analyzing a single, globally averaged time series of CO2 anomalies. Here we examined how the temporal evolution of CO2 in different latitude bands may be used to separate contributions from temperature stress, drought stress, and fire emissions to CO2 variability. We developed atmospheric CO2 patterns from each of these mechanisms during 1997–2011 using an atmospheric transport model. NEE responses to temperature, NEE responses to drought, and fire emissions all contributed significantly to CO2 variability in each latitude band, suggesting that no single mechanism was the dominant driver. We found that the sum of drought and fire contributions to CO2 variability exceeded direct NEE responses to temperature in both the Northern and Southern Hemispheres. Additional sensitivity tests revealed that these contributions are masked by temporal and spatial smoothing of CO2 observations. Accounting for fires, the sensitivity of tropical NEE to temperature stress decreased by 25% to 2.9 ± 0.4 Pg C yr−1 K−1. These results underscore the need for accurate attribution of the drivers of CO2 variability prior to using contemporary observations to constrain long-term ESM responses.
    Description: This work was supported by the Department of Energy Office of Science Biological and Environmental Research Division, the National Science Foundation Decadal and Regional Climate Prediction using Earth System Models (EaSM) program (NSF AGS 1048890 and AGS 1048827), and NASA Carbon Cycle Science (NASA NNX11AF96G). G.K.A. acknowledges a NOAA Climate and Global Change postdoctoral fellowship. J.B.M. and E.J.D. thank NOAA's Climate Program Office's Atmospheric Chemistry, Carbon Cycle, and Climate (AC4) program for support
    Keywords: Carbon cycle ; Climate variability ; Drought ; Fire ; Terrestrial ecosystems ; Atmospheric CO2
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 121 (2016): 2369–2389, doi:10.1002/2015JG003311.
    Description: We analyzed 20 years (1993–2013) of observations of dissolved inorganic macronutrients (nitrate, N; phosphate, P; and silicate, Si) and chlorophyll a (Chl) at Palmer Station, Antarctica (64.8°S, 64.1°W) to elucidate how large-scale climate and local physical forcing affect the interannual variability in the seasonal phytoplankton bloom and associated drawdown of nutrients. The leading modes of nutrients (N, P, and Si empirical orthogonal functions 1, EOF1) represent overall negative anomalies throughout growing seasons, showing a mixed signal of variability in the initial levels and drawdown thereafter (low-frequency dynamics). The second most common seasonal patterns of nitrate and phosphate (N and P EOF2) capture prolonged drawdown events during December–March, which are correlated to Chl EOF1. Si EOF2 captures a drawdown event during November–December, which is correlated to Chl EOF2. These different drawdown patterns are shaped by different sets of physical and climate forcing mechanisms. N and P drawdown events during December–March are influenced by the winter and spring Southern Annular Mode (SAM) phase, where nutrient utilization is enhanced in a stabilized upper water column as a consequence of SAM-driven winter sea ice and spring wind dynamics. Si drawdown during November–December is influenced by early sea ice retreat, where ice breakup may induce abrupt water column stratification and a subsequent diatom bloom or release of diatom cells from within the sea ice. Our findings underscore that seasonal nutrient dynamics in the coastal WAP are coupled to large-scale climate forcing and related physics, understanding of which may enable improved projections of biogeochemical responses to climate change.
    Description: U.S. National Science Foundation Grant Numbers: OPP-9011927, 9632763, 0217282, 0823101, GEO-PLR 1440435; NASA ROSES Grant Number: NNX14AL86G
    Description: 2017-03-17
    Keywords: Nutrient drawdown ; Phytoplankton bloom ; Climate variability ; Western Antarctic Peninsula ; Palmer LTER ; Biogeochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C12099, doi:10.1029/2009JC005835.
    Keywords: Modeling ; Climate ; Carbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C09013, doi:10.1029/2008JC005183.
    Description: Here we use observations and ocean models to identify mechanisms driving large seasonal to interannual variations in dissolved inorganic carbon (DIC) and dissolved oxygen (O2) in the upper ocean. We begin with observations linking variations in upper ocean DIC and O2 inventories with changes in the physical state of the ocean. Models are subsequently used to address the extent to which the relationships derived from short-timescale (6 months to 2 years) repeat measurements are representative of variations over larger spatial and temporal scales. The main new result is that convergence and divergence (column stretching) attributed to baroclinic Rossby waves can make a first-order contribution to DIC and O2 variability in the upper ocean. This results in a close correspondence between natural variations in DIC and O2 column inventory variations and sea surface height (SSH) variations over much of the ocean. Oceanic Rossby wave activity is an intrinsic part of the natural variability in the climate system and is elevated even in the absence of significant interannual variability in climate mode indices. The close correspondence between SSH and both DIC and O2 column inventories for many regions suggests that SSH changes (inferred from satellite altimetry) may prove useful in reducing uncertainty in separating natural and anthropogenic DIC signals (using measurements from Climate Variability and Predictability's CO2/Repeat Hydrography program).
    Description: This report was prepared by K.B.R. under awards NA17RJ2612 and NA08OAR4320752, which includes support through the NOAA Office of Climate Observations (OCO). The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of the National Oceanic and Atmospheric Administration or the U.S. Department of Commerce. Support for K.B.R. was also provided by the Carbon Mitigation Initiative (CMI) through the support of BP, Amaco, and Ford. R.M.K. was supported by NOAA grants NA17RJ2612, NA08OAR4320752, and NA08OAR4310820. F.F.P. was supported by the European Union FP6 CARBOOCEAN Integrated project (contract 51176), the French OVIDE project, and the Spanish Salvador de Madariaga program (PR2006– 0523). This work was also supported by the European NOCES project (EVK2-CT201-00134). Y.Y. and A.I. are partly supported by CREST, JST of Japan. The long-term OISO observational program in the South Indian Ocean is supported by the following three French institutes: INSU (Institut National des Sciences de l’Univers), IPSL (Institute Pierre-Simon Laplace), and IPEV (Institut Paul-Emile Victor).
    Keywords: Modeling ; Climate ; Carbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 115 (2010): C03024, doi:10.1029/2009JC005267.
    Description: The Southern Ocean is a climatically sensitive region that plays an important role in the regional and global modulation of atmospheric CO2. Based on satellite-derived sea ice data, wind and cloudiness estimates from numerical models (National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis), and in situ measurements of surface (0–20 m depth) chlorophyll a (ChlSurf) and dissolved inorganic carbon (DICSurf) concentration, we show sea ice concentration from June to November and spring wind patterns between 1979 and 2006 had a significant influence on midsummer (January) primary productivity and carbonate chemistry for the Western Shelf of the Antarctic Peninsula (WAP, 64°–68°S, 63.4°–73.3°W). In general, strong (〉3.5 m s−1) and persistent (〉2 months) northerly winds during the previous spring were associated with relatively high (monthly mean 〉 2 mg m−3) ChlSurf and low (monthly mean 〈 2 mmol kg−1) salinity-corrected DIC (DICSurf*) during midsummer. The greater ChlSurf accumulation and DICSurf* depletion was attributed to an earlier growing season characterized by decreased spring sea ice cover or nearshore accumulation of phytoplankton in association with sea ice. The impact of these wind-driven mechanisms on ChlSurf and DICSurf* depended on the extent of sea ice area (SIA) during winter. Winter SIA affected phytoplankton blooms by changing the upper mixed layer depth (UMLD) during the subsequent spring and summer (December–January–February). Midsummer DICSurf* was not related to DICSurf* concentration during the previous summer, suggesting an annual replenishment of surface DIC during fall/winter and a relatively stable pool of deep (〉200 m depth) “winter-like” DIC on the WAP.
    Description: This research was supported by NSF OPP grants 0217282 to HWD at the Virginia Institute of Marine Science and 0823101 to HWD at the MBL.
    Keywords: Climate variability ; Antarctica ; Carbonate system
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycle 28 (2014): 538–552, doi:10.1002/2013GB004704.
    Description: The triple oxygen isotopic composition of dissolved oxygen (17Δdis) was added to the ocean ecosystem and biogeochemistry component of the Community Earth System Model, version 1.1.1. Model simulations were used to investigate the biological and physical dynamics of 17Δdis and assess its application as a tracer of gross photosynthetic production (gross oxygen production (GOP)) of O2 in the ocean mixed layer. The model reproduced large-scale patterns of 17Δdis found in observational data across diverse biogeographical provinces. Mixed layer model performance was best in the Pacific and had a negative bias in the North Atlantic and a positive bias in the Southern Ocean. Based on model results, the steady state equation commonly used to calculate GOP from tracer values overestimated the globally averaged model GOP by 29%. Vertical entrainment/mixing and the time rate of change of 17Δdis were the two largest sources of bias when applying the steady state method to calculate GOP. Entrainment/mixing resulted in the largest overestimation in midlatitudes and during summer and fall and almost never caused an underestimation of GOP. The tracer time rate of change bias resulted both in underestimation of GOP (e.g., during spring blooms at high latitudes) and overestimation (e.g., during the summer following a bloom). Seasonally, bias was highest in the fall (September-October-November in the Northern Hemisphere, March-April-May in the Southern), overestimating GOP by 62%, globally averaged. Overall, the steady state method was most accurate in equatorial and low-latitude regions where it estimated GOP to within ±10%. Field applicable correction terms are derived for entrainment and mixing that capture 86% of model vertical bias and require only mixed layer depth history and triple oxygen isotope measurements from two depths.
    Description: We acknowledge support from Center for Microbial Oceanography Research and Education (CMORE) (NSF EF-0424599) and NOAA Climate Program Office (NA 100AR4310093).
    Description: 2014-11-23
    Keywords: Primary production ; Triple oxygen isotope ; Photosynthesis ; Gross primary production ; Carbon ; Oxygen
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/postscript
    Format: application/msword
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...