GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Carbachol  (1)
  • Contractile function, Other myocardial biology, Other heart failure, Animal models of human disease, Physiological and pathological control of gene expression, Receptor pharmacology  (1)
Document type
Keywords
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of toxicology 29 (1972), S. 39-49 
    ISSN: 1432-0738
    Keywords: Mouse ; Rat ; Brain ; Light-Dark-Programming ; Circadian ; Toxicity Rhythms ; Acetylcholine ; Pilocarpine ; Oxotremorine ; Carbachol ; Physostigmine ; Neostigmine ; Atropine ; Scopolamine ; Atropine Methyl Nitrate ; Maus ; Ratten ; Gehirn ; Beleuchtungsprogramm ; Circadianer Toxicitätsrhythmus ; Acetylcholin ; Piloearpin ; Oxotremorin ; Carbachol ; Physostigmin ; Neostigmin ; Atropin ; Scopolamin ; Atropin-methylnitrat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Zusammenfassung Nach Adaptation an ein Licht-Dunkelprogramm (8.00 bis 20.00 Licht, 20.00 bis 8.00 Dunkelheit) wurde der Acetylcholingehalt (ACh) im Mittelhirn und N. caudatus von Ratten sowie im Gesamthirn von Mäusen bestimmt. Die höchsten ACh-Konzentrationen wurden bei Ratten um 24.00 gefunden; die höchsten ACh-Werte bei der Maus waren nicht signifikant von den Konzentrationen um 24.00 und 12.00 verschieden. Signifikante ACh-Minima traten im Mittelhirn der Ratte um 12.00, im N. caudatus sowie im Mäusegehirn um 18.00 Uhr auf. Während der Dunkelperiode wurde die größte Toxicität gegenüber i.v. bzw. i.p. injiziertem ACh bei Mäusen gefunden. Ähnliche zeitliche Unterschiede ergaben sich für Neostigmin, Pilocarpin und Oxytremorin. Die Toxicität von Carbachol zeigte Maxima bei 12.00 und 24.00. Für Physostigmin, einen CholinesteraseHemmstoff mit einem tertiären Stickstoff, lagen sowohl die Toxicitätsmaxima als auch die Toxicitätsminima in der Dunkelperiode. Die rhythmische Schwankung der Toxicität von i.p. verabfolgtem Atropin verhielt sich umgekehrt wie die der Cholinomimetica (außer Carbachol). Auch nach i.v. Applikation von Scopolamin und N-Methylatropin war ein entsprechender rhythmischer Einfluß auf die Toxicität nachweisbar. Die Vorbehandlung mit N-Methylatropin schwächte die Toxicität zwar ab, der Toxicitätsrhythmus gegenüber ACh und Physostigmin war aber nicht verändert. Die Toxicität von Cholinomimetica zeigt ein Maximum während der höchsten ACh-Konzentrationen im Gehirn und der höchsten Stoffwechselaktivität. Bei den anticholinergen Substanzen zeigte sich ein umgekehrtes Verhältnis. Die Beziehungen zum zentralen ACh-Gehalt sind unklar.
    Notes: Abstract Acetylcholine (ACh) levels were determined in rat midbrain and caudate nucleus and mouse whole brain in mature animals adapted 3 weeks to a programmed lighting schedule (08:00 to 20:00 h light; 20:00 to 08:00 dark). Peak ACh levels in the rat occurred at 24:00 h; in the mouse the peak at 06:00 h did not differ significantly from values obtained at 24:00 and 12:00 h. Significant trough values occurred at 12:00 h in rat midbrain and at 18:00h in rat caudate nucleus and mouse brain. In mice toxicity of I.V. and I.P. administered ACh is maximal during the dark. Neostigmine, pilocarpine and oxotremorine have toxicity patterns similar to ACh. Carbachol toxicity peaked at 12:00 and 24:00 h. With physostigmine, a tertiary anticholinesterase, peak and trough occurred during the dark. The atropine (I.P.) toxicity rhythm is a mirror image of the cholinomimetic rhythm (except for carbachol). I.V. scopolamine and atropine methyl nitrate patterns resemble atropine's but are less clear-cut. Atropine methyl nitrate pretreatment reduced ACh and physostigmine toxicity but did not alter the overall pattern. Cholinomimetic toxicity and brain ACh patterns are similar, peaking when metabolic activity is maximal. An inverse relationship holds for the anticholinergic drugs. The relationship to central ACh is uncertain.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-06-19
    Description: Background— Chronic β-adrenergic receptor (β-AR) overstimulation, a hallmark of heart failure, is associated with increased cardiac expression of matrix metalloproteinases (MMPs). MMP-1 has been shown to cleave and activate the protease-activated receptor 1 (PAR1) in noncardiac cells. In the present study, we hypothesized that β-AR stimulation would result in MMP-dependent PAR1 transactivation in cardiac cells. Methods and Results— β-AR stimulation of neonatal rat ventricular myocytes (NRVMs) or cardiac fibroblasts with isoproterenol transduced with an alkaline phosphatase–tagged PAR1 elicited a significant increase in alkaline phosphatase–PAR1 cleavage. This isoproterenol-dependent cleavage was significantly reduced by the broad-spectrum MMP inhibitor GM6001. Importantly, specific MMP-13 inhibitors also decreased alkaline phosphatase–PAR1 cleavage in isoproterenol-stimulated NRVMs, as well as in NRVMs stimulated with conditioned medium from isoproterenol-stimulated cardiac fibroblasts. Moreover, we found that recombinant MMP-13 stimulation cleaved alkaline phosphatase–PAR1 in NRVMs at DPRS 42 43 FLLRN. This also led to the activation of the ERK1/2 pathway through Gαq in NRVMs and via the Gαq/ErbB receptor pathways in cardiac fibroblasts. MMP-13 elicited similar levels of ERK1/2 activation but lower levels of generation of inositol phosphates in comparison to thrombin. Finally, we demonstrated that either PAR1 genetic ablation or pharmacological inhibition of MMP-13 prevented isoproterenol-dependent cardiac dysfunction in mice. Conclusions— In this study, we demonstrate that β-AR stimulation leads to MMP-13 transactivation of PAR1 in both cardiac fibroblasts and cardiomyocytes and that this likely contributes to pathological activation of Gαq and ErbB receptor–dependent pathways in the heart. We propose that this mechanism may underlie the development of β-AR overstimulation–dependent cardiac dysfunction.
    Keywords: Contractile function, Other myocardial biology, Other heart failure, Animal models of human disease, Physiological and pathological control of gene expression, Receptor pharmacology
    Electronic ISSN: 1524-4539
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...