GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • CAMP-dependent phosphorylation  (1)
  • PDE-isoenzymes  (1)
  • 1
    ISSN: 1573-4919
    Keywords: Ca2+ channels ; CAMP-dependent phosphorylation ; cardiac contractile force ; protein kinase A
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract In canine myocardium, the β-subunit of the L-type Ca2+ channel is phosphorylated by cAMP dependent protein kinase in vitro as well as in vivo (Haase et al. FEBS Lett 335: 217–222, 1993). We have assessed the identity of the β-subunit as well as its in vivo phosphorylation in representative experimental groups of catecholamine-challenged canine hearts. Adrenergic stimulation by high doses of both noradrenaline and isoprenaline induced rapid (within 20 sec) and nearly complete phosphorylation of the Ca2+ channel β-subunit. Phosphorylation in vivo was about 4-fold higher as compared to untreated controls. When related to catecholamine-depleted (reserpine-treated) hearts noradrenaline and isoprenaline increased the in vivo phosphorylation of the β-subunit even 8-fold. This phosphorylation correlated positively with tissue levels of cAMP, endogenous particulated cAMP-dependent protein kinase (PKA) and the rate of contractile force development dP/dtmax. The results imply the involvement of a PKA-mediated phosphorylation of the Ca2+ channel β-subunit in the adrenergic stimulation of intact canine myocardium.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 147 (1995), S. 115-122 
    ISSN: 1573-4919
    Keywords: cardioprotection ; delayed adaptation ; cAMP ; PDE-isoenzymes ; prolongation of protection
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Mild (not harmful) stress may initiate anadaptive mechanism, protecting the heart from harmful consequences of a more severe stress. There are at least three known types of cardiac adaptation to stress such as: a) the gradually developing long lasting adaptation to chronic mechanical overload, leading to cardiac hypertrophy, later to cardiomyopathy and heart failure, b) the rapidly developing adaptation to moderate stress initiated by ‘preconditioning’ brief coronary occlusion(s) or brief periods of rapid cardiac pacing, protecting for less than 1 h against consequences of a subsequent, severe stress, c) the later appearing, more prolonged cardio-protective adaptation, described by us in 1983, induced by various forms of more severe but not injurious stimuli, such as an optimal dose of prostacyclin or its stable analogues; or a series of brief periods of rapid pacings. This form of cardiac adaptation to stress protects for 24–48 h against consequences of a more severe stress such as: 1. myocardial ischaemia; 2. early and late postocclusion and reperfusion arrhythmias; 3. early morphologic changes secondary to ischaemia and reperfusion; 4. ischaemia induced myocadial loss of K+ and accumulation of Na+ and Ca++; 5. it may increase the tolerance to the toxic effects of cardiac glycosides. A reduced response to beta-adrenergic stimuli and a concomitant increase in activity and amount of PDE I and IV was shown by us earlier. The hypothesis that these factors may play a role in the mechanism of delayed protection was confirmed by our present findings according to which 7-oxo-PgI2-treatment greatly attenuated the dose dependent isoprenaline-induced increase in contractility, relaxation and myocardial cAMP level in rat hearts isolated 48h after 7-oxo-PgI2. In addition all these values are in close correlation with each other. The endogenous ‘self-defence’ of the heart based on adaptation represents anew therapeutic concept, different from the classical drug-receptor interaction produced protection. Its possible exploitation to therapeutic use requires that the adaptation inducing stress should beapplicable topatients, furthermore prolongation of duration of protection should be possible. As a first step in testing applicability to therapy we had to show that drug induced adaptive protection is existing in the conscious animal. In our present study we found an attenuation of rapid pacing induced elevation of the ST-segment in the endocardial electrogram and in the left ventricular end diastolic pressure in conscious rabbits 24–48 h after treatment with Iloprost. Besides we found an attenuation of tachycardia and arrhythmias due to two stage coronary artery ligation in conscious dog 48 h after pretreatment with 7-oxo-PgI2. Finally we were able to demonstrate that protection against coronary artery occlusion-induced ST segment elevation and arrhythmias can be prolonged at will by periodically repeated maintenance doses.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...