GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    New York :Cambridge University Press,
    Keywords: Buoyant convection. ; Electronic books.
    Description / Table of Contents: This book summarizes our present understanding of buoyancy-driven flows, ranging from buoyant coastal currents to dense overflows in the ocean, and from avalanches to volcanic pyroclastic flows. It is an invaluable resource for advanced students and researchers in oceanography, geophysical fluid dynamics, atmospheric science and the wider Earth sciences.
    Type of Medium: Online Resource
    Pages: 1 online resource (446 pages)
    Edition: 1st ed.
    ISBN: 9781139340069
    DDC: 551.48
    Language: English
    Note: Cover -- BUOYANCY-DRIVEN FLOWS -- TITLE -- COPYRIGHT -- Contents -- Contributors -- Introduction -- References -- 1: Gravity Currents - Theory and Laboratory Experiments -- 1.1 Introduction -- 1.2 Reduced Gravity -- 1.3 Frontogenesis -- 1.4 Nondimensional Parameters -- 1.5 Scaling Analysis -- 1.6 Theories for the Froude Number -- 1.6.1 Yih's Theory -- 1.6.2 Von Kármán's Theory -- 1.6.3 Benjamin's Theory -- 1.6.3.1 Mass and Momentum Conservation -- 1.6.3.2 Energy Conservation -- 1.6.3.3 Comparison with Experiment -- 1.6.4 Energy-Conserving Theory -- 1.6.4.1 Partial-Depth Lock Releases -- 1.6.4.2 Mass and Momentum conservation -- 1.6.4.3 Energy Conservation -- 1.6.4.4 Comparison with Experiments -- 1.6.4.5 Energy Transfers -- 1.7 Shallow Water Theory -- 1.7.1 Similarity Solution -- 1.7.1.1 Comparison with Experiment -- 1.8 Stratified Ambient Fluid -- 1.8.1 Criticality -- 1.8.2 Comparison with Data for Stratified Ambient Fluids -- 1.8.2.1 Current Speed -- 1.8.3 Current Depth -- 1.9 Summary and Conclusions -- Acknowledgments -- References -- 2: Theory of Oceanic Buoyancy-Driven Flows -- 2.1 General Considerations and a Laboratory Example -- 2.1.1 Introduction -- 2.1.2 A Laboratory Example: Formulation -- 2.1.3 The Linear Problem -- 2.1.4 The Interior -- 2.1.5 Sidewall Boundary Layers σS < -- < -- 1 -- 2.1.6 The Hydrostatic Layer -- 2.1.7 The Buoyancy Layer -- 2.1.8 Matching the boundary conditions at r = ro -- 2.1.9 The Purely Mechanically Driven Flow -- 2.1.10 The Buoyancy Driven Flow in the Cylinder -- 2.1.11 A Laboratory Example -- 2.2 Buoyancy-Driven Flows in Beta-Plane Basins:The Relation Between Buoyancy Forcing and the Location of Vertical Motion -- 2.2.1 Introduction -- 2.2.2 The Model Formulation -- 2.2.3 Interior Solution -- 2.2.4 Boundary Layer Structure -- 2.2.4.1 The diffusion layer -- 2.2.4.2 The Hydrostatic Layer -- 2.2.5 Matching. , 2.2.6 An Example -- 2.2.7 Nonlinear Theory -- 2.3 Buoyancy Forced Flows with Weak Stratification: Downstream Variation Effects -- 2.3.1 Introduction -- 2.3.2 The Model -- 2.3.3 The Interior -- 2.3.4 The Sidewall Boundary Layer for σH S < -- < -- EH 2/3(D/L)2/3 -- 2.3.5 An Example -- 2.3.6 Discussion -- References -- 3: Buoyancy-Forced Circulation and Downwelling in Marginal Seas -- 3.1 Introduction -- 3.2 Buoyancy-Forced Circulation and Exchange -- 3.2.1 Influence of a Boundary -- 3.2.2 Influence of Sloping Topography -- 3.2.3 Moving Further Toward a More Realistic Configuration -- 3.2.4 Influence of Wind Forcing -- 3.3 Dynamics of Downwelling -- 3.3.1 Dissipative, Stratified Flows -- 3.3.2 Weak Dissipation, Stratified Flows -- 3.3.3 Weakly Stratified Flows -- 3.3.3.1 Along-Channel Evolution -- 3.3.3.2 The Nonhydrostatic Layer -- 3.3.3.3 Cooling Distribution -- 3.3.3.4 Parameter Dependencies -- 3.4 Summary -- Acknowledgments -- References -- 4: Buoyant Coastal Currents -- 4.1 Introduction -- 4.2 A Simple Model for Buoyant Coastal Currents over a Sloping Bottom -- 4.3 Evaluating the Buoyant Coastal Current Model -- 4.3.1 Laboratory model -- 4.3.2 Numerical Model -- 4.3.3 Ocean Observations - The Chesapeake Bay Buoyant Coastal Current -- 4.4 Response of Buoyant Coastal Currents to Wind Forcing -- Acknowledgments -- References -- 5: Overflows and Convectively Driven Flows -- 5.1 Introduction to Overflows -- 5.1.1 What Are Dense Overflows? -- 5.1.2 Denmark Straits Overflow -- 5.1.3 Faroe Bank Channel Overflow -- 5.1.4 Red Sea Overflow -- 5.1.5 Mediterranean Overflow -- 5.1.6 Antarctic Overflows -- 5.1.7 Midocean Ridge Overflows -- 5.1.8 Common Features of Overflows -- 5.2 Overflow Processes: Focus on Entrainment -- 5.2.1 The Entrainment Concept -- 5.2.2 Causes of Entrainment -- 5.2.3 Parameterizing Entrainment -- 5.2.4 Detrainment. , 5.2.5 The Frictional Bottom Boundary Layer -- 5.2.6 Inhomogeneities Across the Overflow Plume -- 5.2.7 Summary -- 5.3 Convectively Driven Ocean Flows -- 5.3.1 Convective Plumes -- 5.3.2 Horizontal Inhomogeneities in Convective Flows -- 5.3.2.1 Localized Buoyancy Forcing -- 5.3.2.2 Convection in the Presence of Lateral Buoyancy Gradients -- 5.3.3 Summary: Contrasting Convection and Overflows -- References -- Appendix: Notation -- 6: An Ocean Climate Modeling Perspective on Buoyancy-Driven Flows -- 6.1 Buoyancy in Ocean Climate Models -- 6.1.1 Reduced Complexity (Box) Models -- 6.1.2 Ocean General Circulation Models for Climate -- 6.1.3 Numerical Constraints and Artifacts -- 6.1.4 Surface Forcing -- 6.1.5 Coupling -- 6.1.6 Concluding remarks on Section 6.1 -- 6.2 Convective Boundary Layers -- 6.2.1 The Ocean Boundary Layer -- 6.2.2 Similarity Theory -- 6.2.3 Penetrative Convection and Spice Injection -- 6.2.4 Concluding Remarks on Section 6.2 -- 6.3 Ventilation in Ocean Models -- 6.3.1 Ideal Age -- 6.3.2 Transit Time Distributions -- 6.3.3 Shallow Ventilation -- 6.3.4 NADW and the AMOC -- 6.3.5 Concluding Remarks on Section 6.3 -- 6.4 Parameterized Overflows -- 6.4.1 Characteristics of Buoyancy-Driven Overflows -- 6.4.2 A Parameterized Mediterranean Overflow -- 6.4.3 Nordic Sea Overflows (Denmark Strait -- Faroe Bank Channel) -- 6.4.4 Comparison with Observations of Ventilation -- 6.4.5 Concluding Remarks on Section 6.4 -- Acknowledgment -- References -- 7: Buoyancy-Driven Currents in Eddying Ocean Models -- 7.1 Introduction -- 7.1.1 Dynamics of Water Mass Formation and Spreading -- 7.1.2 Representing Eddies in Numerical Models: A Historical Perspective -- 7.2 Characteristics of Numerical Models of the Ocean -- 7.3 Interplay of Numerics and Parameterizations -- 7.4 Modeling Deep Flow Through the Romanche Fracture Zone. , 7.5 Modeling the Spreading of Mediterranean Water in the Atlantic -- 7.5.1 The initial descent -- 7.5.2 The Mediterranean undercurrent -- 7.5.3 The Mediterranean Salt Tongue -- 7.6 Conclusion -- List of Acronyms -- References -- 8: Atmospheric Buoyancy-Driven Flows -- 8.1 Introduction -- 8.1.1 The Atmosphere -- 8.1.2 The Weather and the Climate -- 8.1.3 Buoyancy in a Perfect Gas -- 8.2 Circulations -- 8.2.1 Atmospheric Frontal Systems -- 8.2.1.1 The Baroclinic Zone -- 8.2.1.2 Baroclinic Development -- 8.2.1.3 Frontogenesis -- 8.2.2 Atmospheric Convection -- 8.2.2.1 Convective Inhibition and Convective Available Potential Energy -- 8.2.2.2 Downdrafts and Cold Density Currents -- 8.2.2.3 Organization of Convection -- 8.2.3 Direct Cells -- 8.2.3.1 Land/Sea Breeze -- 8.2.3.2 Mountain Breeze -- 8.3 Simulations -- 8.3.1 Overview of Atmospheric Simulations -- 8.3.2 Modeling Buoyancy-Driven Flows -- References -- 9: Volcanic Flows -- 9.1 Introduction -- 9.2 Magma Injection and Eruption Triggering -- 9.3 Second Boiling and Eruption Triggers -- 9.4 Magma Mixing -- 9.4.1 Mixing Prior to Eruption -- 9.4.2 Mixing During Eruption -- 9.5 Eruption Dynamics -- 9.5.1 Eruption Columns -- 9.5.2 Ash Flows -- 9.6 Related Volcanic Processes -- 9.6.1 Submarine Eruptions -- 9.6.2 Hydrothermal Eruptions -- 9.6.3 Lake Nyos Explosion -- 9.7 Summary -- References -- 10: Gravity Flow on Steep Slope -- 10.1 Introduction -- 10.2 A Physical Picture of Gravity Flows -- 10.2.1 Debris Flows -- 10.2.2 Snow Avalanches -- 10.3 Anatomy of Gravity Currents on Slope -- 10.3.1 Anatomy of Debris Flows -- 10.3.2 Anatomy of Powder-Snow Avalanches -- 10.4 Fluid-Mechanics Approach to Gravity Currents -- 10.4.1 Scaling and Flow Regimes -- 10.4.2 Rheology -- 10.4.3 Segregation and Particle Migration -- 10.4.4 Sliding-Block and Box Models -- 10.4.5 Depth-Averaged Equations. , 10.4.6 Asymptotic Expansions -- 10.5 Dense Flows -- 10.5.1 Simple Models -- 10.5.2 Depth-Averaged Equations -- 10.5.3 Elongating Viscoplastic Flows -- 10.6 Dilute Inertia-Dominated Flows -- 10.6.1 Sliding Block Model -- 10.6.2 Depth-Averaged Equations -- 10.7 Comparison with Data -- 10.7.1 Comparison with Laboratory Data -- 10.7.2 Comparison with Field Data -- 10.8 Concluding Remarks and Perspectives -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2913–2932, doi:10.1175/JPO-D-14-0179.1.
    Description: The oceanic deep circulation is shared between concentrated deep western boundary currents (DWBCs) and broader interior pathways, a process that is sensitive to seafloor topography. This study investigates the spreading and deepening of Denmark Strait overflow water (DSOW) in the western subpolar North Atlantic using two ° eddy-resolving Atlantic simulations, including a passive tracer injected into the DSOW. The deepest layers of DSOW transit from a narrow DWBC in the southern Irminger Sea into widespread westward flow across the central Labrador Sea, which remerges along the Labrador coast. This abyssal circulation, in contrast to the upper levels of overflow water that remain as a boundary current, blankets the deep Labrador Sea with DSOW. Farther downstream after being steered around the abrupt topography of Orphan Knoll, DSOW again leaves the boundary, forming cyclonic recirculation cells in the deep Newfoundland basin. The deep recirculation, mostly driven by the meandering pathway of the upper North Atlantic Current, leads to accumulation of tracer offshore of Orphan Knoll, precisely where a local maximum of chlorofluorocarbon (CFC) inventory is observed. At Flemish Cap, eddy fluxes carry ~20% of the tracer transport from the boundary current into the interior. Potential vorticity is conserved as the flow of DSOW broadens at the transition from steep to less steep continental rise into the Labrador Sea, while around the abrupt topography of Orphan Knoll, potential vorticity is not conserved and the DSOW deepens significantly.
    Description: This work is supported by ONR Award N00014-09-1-0587, the NSF Physical Oceanography Program, and NASA Ocean Surface Topography Science Team Program.
    Description: 2016-06-01
    Keywords: Circulation/ Dynamics ; Abyssal circulation ; Boundary currents ; Ocean circulation ; Ocean dynamics ; Potential vorticity ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C12005, doi:10.1029/2007JC004145.
    Description: We have evaluated a regional-scale simulation of the Mediterranean outflow by comparison with field data obtained in the 1988 Gulf of Cádiz Expedition. Our ocean model is based upon the Hybrid Coordinate Ocean Model (HYCOM) and includes the Richardson number–dependent entrainment parameterization of Xu et al. (2006). Given realistic topography and sufficient resolution, the model reproduces naturally the major, observed features of the Mediterranean outflow in the Gulf of Cádiz: the downstream evolution of temperature, salinity, and velocity profiles, the mean path and the spreading of the outflow plume, and most importantly, the localized, strong entrainment that has been observed to occur just west of the Strait of Gibraltar. As in all numerical solutions, there is some sensitivity to horizontal and vertical resolution. When the resolution is made coarser, the simulated currents are less vigorous and there is consequently less entrainment. Our Richardson number–dependent entrainment parameterization is therefore not recommended for direct application in coarse-resolution climate models. We have used the high-resolution regional model to investigate the response of the Mediterranean outflow to a change in the freshwater balance over the Mediterranean basin. The results are found in close agreement with the marginal sea boundary condition (MSBC): A more saline and dense Mediterranean deep water generates a significantly greater volume transport of the Mediterranean product water having only very slightly greater salinity.
    Description: National Science Foundation via grant OCE0336799 and the National Ocean Partnership Program (NOPP) via award N000140410676.
    Keywords: Mediterranean outflow ; Entrainment parameterization ; Climate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...