GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Biosynthesis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (644 pages)
    Edition: 1st ed.
    ISBN: 9780080923369
    Series Statement: Issn Series
    Language: English
    Note: Front Cover -- Methods in Enzymology Complex Enzymes in Microbial Natural Product Biosynthesis, Part B: Polyketides, Aminocoumarins and Carbohydrates -- Copyright Page -- Contents -- Contributors -- Preface -- Methods in Enzymology -- Chapter 1: Introduction to Polyketide Biosynthesis -- 1. Introduction -- 1.1. Types of PKS -- 1.2. Type II PKS -- 1.3. Type III PKS -- 1.4. Type I PKS -- 1.5. Combinatorial biosynthesis: Prospects and progress -- Acknowledgments -- References -- Chapter 2: Structural Enzymology of polyketide Synthases -- Chapter 3: Chapter Three: Fungal Type I Polyketide Synthases -- 1. Introduction -- 2. Partially Reducing PKSs: 6-Methylsalicylate Synthase -- 3. Nonreducing PKSs -- 3.1. Norsolorinic acid synthase -- 3.2. Tetrahydroxynaphthalene synthase -- 3.3. Bikaverin nonaketide synthase -- 4. Highly Reducing PKSs -- 4.1. Lovastatin (LNKS and LDKS) -- 4.2. HR PKS-NRPS: Fusarin and tenellin synthetases -- 5. NR/HR PKS Hybrid Systems: Zearalenone (ZAE1 and ZAE2) -- 6. Conclusions -- References -- Chapter 4: Tandem Acyl Carrier Protein Domains in Polyunsaturated Fatty Acid Synthases -- 1. Introduction -- 2. Methods -- 2.1. Production of PUFAs in E. coli by expressing the PUFAS genes -- 2.2. Mapping the active sites of PfaA-ACPs by site-directed mutagenesis -- 2.3. Overproduction of each of the PfaA-ACPs -- 2.4. Overproduction of PfaE and Svp PPTases -- 2.5. In vivo and in vitro preparation of the holo-form of PfaA-ACPs -- 2.6. Elucidation of the relationship between PUFA production and the number of active ACPs -- 3. Conclusion -- Acknowledgments -- References -- Chapter 5: Iterative Type I Polyketide Synthases for Enediyne Core Biosynthesis -- 1. Introduction -- 2. Methods -- 2.1. PCR amplification of PKSE cassettes for predictive classification of new enediynes -- 2.2. Heterologous expression and overproduction of PKSE proteins. , 2.3. Production and isolation of the polyene intermediate from 9-membered PKSEs -- 2.4. Production of apo-ACPs from PKSE for in vitro functional analyses -- 2.5. In vitro preparation of holo-ACPs -- 3. Conclusion -- Acknowledgments -- References -- Chapter 6: Chapter Six The DEBS Paradigm for Type I Modular Polyketide Synthases and Beyond -- 1. Introduction -- 2. DEBS and the Concept of a Module -- 2.1. Generalizability of the DEBS paradigm -- 3. Beyond the DEBS Paradigm -- 3.1. Specificity of the AT domains -- 3.2. Novel loading modules -- 3.3. Methylation domains -- 3.4. Trans PKS activities -- 3.5. Unusual modular organization -- 3.6. Unusual module functions -- 3.7. Intermodular interactions -- 4. Conclusion -- References -- Chapter 7: Formation and Characterization of Acyl Carrier Protein-Linked Polyketide Synthase Extender Units -- 1. Introduction -- 2. Overproduction and Purification of Recombinant Proteins -- 2.1. Principle -- 2.2. Materials -- 2.3. Heterologous overproduction of proteins -- 2.4. Purification of enzymes using batch-binding method with Nickel-NTA resin -- 3. Formation and Characterization of Hydroxymalonyl-ACP and Aminomalonyl-ACP -- 3.1. In vitro phosphopantetheinylation of the ACPs ZmaD and ZmaH -- 3.2. HPLC-based characterization of modified ACPs -- 3.3. Formation of (2R)-hydroxymalonyl-ACP -- 3.4. Formation of (2S)-aminomalonyl-ACP -- 3.5. MALDI-TOF MS analysis of ACPs -- 3.6. Other methods for characterizing enzymes involved in (2S)-aminomalonyl-ACP formation -- 3.7. Other methods for characterizing enzymes involved in (2R)-hydroxymalonyl-ACP formation -- References -- Chapter 8: Type I Polyketide Synthases That Require Discrete Acyltransferases -- 1. Introduction -- 2. Methods -- 2.1. Heterologous expression and overproduction of apo-ACPs from AT-less PKS modules -- 2.2. In vitro preparation of holo-ACPs. , 2.3. Heterologous expression and overproduction of discrete ATs -- 2.4. In vitro assay for AT substrate specificity -- 2.5. In vitro assay of AT-catalyzed loading of acyl CoA extender substrate to holo-ACPs -- 3. Conclusion -- Acknowledgments -- References -- Chapter 9: The Enzymology of Polyether Biosynthesis -- 1. Introduction -- 2. Genetic Mining and Functional Analysis of Genes Specific to Polyether Biosynthetic Pathways -- 3. Premonensin, the Parent Unsaturated Monensin Polyketide -- 4. Epoxidases MonCI, NigCI, and NanO -- 5. Epoxide Hydrolases MonBI/BII, NigBI/BII, NanI, and Lsd19 -- 6. NanE, a Polyether-Specific Thioesterase -- 6.1. In vitro studies of NanE thioesterase -- 7. Assay of Polyether Thioesterase Activity -- 7.1. Site-directed mutagenesis of NanE -- 8. Transcriptional Analysis of the Nanchangmycin Biosynthetic Pathway Genes -- 9. Conclusions -- Acknowledgments -- References -- Chapter 10: Enzymology of the Polyenes Pimaricin and Candicidin Biosynthesis -- 1. Introduction -- 2. Pimaricin as a Prototype of Small Polyenes: Discovery and Properties -- 3. Pimaricin Biosynthesis in S. natalensis -- 3.1. The pimaricin gene cluster -- 3.2. Formation of pimaricinolide: The pimaricinolide synthase complex -- 3.3. Pimaricinolide tailoring and export -- 4. Regulation of Pimaricin Biosynthesis -- 4.1. Transcriptional regulators -- 4.2. Regulation by cholesterol oxidase -- 4.3. Inducers of pimaricin biosynthesis -- 4.4. Global regulatory mechanisms -- 5. Candicidin: A Prototype of ``Aromatic´´ Polyenes -- 6. The Candicidin/FR-008 Gene Cluster -- 7. Biosynthesis of PABA: The pabAB and pabC Genes -- 8. The Polyketide Synthases -- 9. Monooxygenase Genes: Modifications of the Polyketide Chain -- 10. Transporter Genes -- 11. Genes Related to Mycosamine Biosynthesis -- 12. Regulatory Genes -- 13. Phosphate Represses Expression of the pabAB Gene. , 14. Future Perspectives -- Acknowledgments -- References -- Chapter 11: Genetic Analysis of Nystatin and Amphotericin Biosynthesis -- 1. Introduction -- 2. Gene Inactivation and Replacement in the Nystatin Producer Streptomyces noursei -- 2.1. Conjugative transfer of a recombinant plasmid from E. coli ET12567 (pUZ8002) into S. noursei ATCC 11455 -- 2.2. Gene inactivation in S. noursei -- 2.3. Gene replacement in S. noursei -- 3. Gene Inactivation and Replacement in the Amphotericin Producer Streptomyces nodosus -- 3.1. Phage-mediated gene replacement in S. nodosus -- 4. Production, Purification, and Characterization of Novel Amphotericin- and Nystatin-Related Polyenes -- 4.1. Production and identification of nystatin-related polyenes -- 4.2. Scaled-up production of nystatin analogues -- 4.3. Preparative LC-MS purification of nystatin analogues -- 5. Conclusion -- Acknowledgments -- References -- Chapter 12: Polyketide Versatility in the Biosynthesis of Complex Mycobacterial Cell Wall Lipids -- 1. Introduction -- 2. Acetate and Propionate Feeding Studies -- 3. Genome Sequencing and Identification of Polyketide Synthases -- 4. Mycobacterial Polyketide Synthases -- 4.1. Biosynthesis of dimycocerosate esters (DIMs) by PKS15/1, PpsABCDE, and MAS -- 4.2. PKS2 is involved in biosynthesis of sulfolipids -- 4.3. PKS12 uses a novel ``modularly iterative´´ mechanism for biosynthesis of mannosyl-beta-1-phosphomycoketides -- 4.4. PKS13 catalyzes condensation of fatty-acyl chains during biosynthesis of mycolic acids -- 4.5. PKS3/4 is involved in the biosynthesis of phthenoic acids -- 4.6. PKS10, PKS7, PKS8, PKS17, PKS9, and PKS11 constitute an unusual PKS cluster -- 4.7. PKS18 is involved in biosynthesis of long-chain pyrones -- 4.8. MbtC and MbtD are involved in biosynthesis of iron-chelating siderophores from Mtb -- 4.9. PKS5 and PKS6. , 5.1. Product formation assay to study activity of PKS enzymes -- 5.2. Characterization of PKS derived saturated fatty acids -- References -- Chapter 13: Genetic Engineering to Produce Polyketide Analogues -- 1. Introduction -- 2. AT Domain Replacement to Alter α-Carbon Substitution -- 3. Procedure for Engineering AT Replacements in the Chromosome -- 4. Engineering beta-Carbon Processing -- 5. Engineering when only a Single Crossover Event is Possible -- 6. Heterologous Expression of Engineered PKS Genes -- 7. Chemobiosynthesis -- 8. Mutasynthesis -- 9. Gene Knockouts to Obtain Analogues -- References -- Chapter 14: Design and Synthesis of Pathway Genes for Polyketide Biosynthesis -- 1. Introduction -- 2. Redesign of PKS Genes to Accommodate Unique Restriction Sites Flanking Individual Components and for Efficient Expression in E -- 3. Validation of Synthetic PKS Gene Design -- 4. A Rapid Assay to Identify Productive Combinations of PKS Modules -- 5. Assembly of Larger Polyketide Synthases Using Information Gained with the Bimodular Assay -- 6. Design and Construction of Synthetic Operons for the Expression of Sugar Pathway Genes -- References -- Chapter 15: Heterologous Production of Polyketides in Bacteria -- 1. Introduction -- 2. General Considerations for the Heterologous Expression of Polyketide Pathways -- 3. S. coelicolor as a Model System for Heterologous Expression of Polyketides -- 4. Procedure for the Heterologous Production of Polyketides in S. coelicolor -- 5. System Improvements for the Heterologous Production of Polyketides in Streptomyces spp. -- 5.1. Handling large PKS genes -- 5.2. Improving polyketide titers -- 5.3. Optimization of conjugation protocols for industrial strains -- 5.4. Optimizing polyketide precursors supply -- 6. Recent Developments for the Production of Polyketides in Nonactinomycete Bacteria. , 6.1. E. coli as heterologous host.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Biosynthesis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (703 pages)
    Edition: 1st ed.
    ISBN: 9780080923352
    Series Statement: Issn Series
    DDC: 660.634
    Language: English
    Note: Front Cover -- Complex Enzymes in Microbial Natural Product Biosynthesis, Part A: Overview Articles and Peptides -- Copyright -- Contents -- Contributors -- Preface -- Methods in Enzymology -- Chapter 1: Approaches to Discovering Novel Antibacterial and Antifungal Agents -- 1. Introduction -- 2. Strains and Samples -- 3. Targets and Assays for Antibacterial and Antifungal Programs -- 4. Screening -- 5. Hit Follow-up -- 6. Databases, Operations, and Costs -- 7. Perspectives -- Acknowledgment -- References -- Chapter 2: From Microbial Products to Novel Drugs that Target a Multitude of Disease Indications -- 1. Microbial Diversity and Biotechnological Products -- 2. Secondary Metabolites -- 3. Conclusions -- Acknowledgments -- References -- Chapter 3: Discovering Natural Products from Myxobacteria with Emphasis on Rare Producer Strains in Combination with Improved Analytical Methods -- 1. Introduction -- 2. The Search for Novel Myxobacteria and Their Metabolites-Basic Considerations -- 3. Methods for Isolation, Purification, and Preservation of Novel Myxobacteria -- 4. Fermentation and Screening for Known and Novel Metabolites -- Acknowledgment -- References -- Chapter 4: Analyzing the Regulation of Antibiotic Production in Streptomycetes -- 1. Introduction -- 2. The Regulation of Antibiotic Production in Streptomycetes -- 3. Identifying Regulatory Genes for Antibiotic Biosynthesis -- 4. Characterizing Regulatory Genes for Antibiotic Biosynthesis -- Acknowledgments -- References -- Chapter 5: Applying the Genetics of Secondary Metabolism in Model Actinomycetes to the Discovery of New Antibiotics -- 1. Introduction -- 2. Actinomycetes as Antibiotic Factories -- 3. Effects of Culture Conditions and Metabolism -- 4. Molecular Genetic Factors that Regulate Antibiotic Production -- 5. Applications for New Antibiotic Screening Technologies. , 6. Future Prospects -- Acknowledgments -- References -- Chapter 6: Regulation of Antibiotic Production by Bacterial Hormones -- 1. Introduction -- 2. Rapid Small-Scale gamma-Butyrolactone Purification -- 3. Antibiotic Bioassay -- 4. Kanamycin Bioassay -- 5. Identification of gamma-Butyrolactone Receptors -- 6. Identification of the gamma-Butyrolactone Receptor Targets -- 7. Gel Retardation Assay to Detect Target Sequences of the gamma-Butyrolactone Receptors -- 8. Conclusions -- Acknowledgments -- References -- Chapter 7: Cloning and Analysis of Natural Product Pathways -- 1. Introduction -- 2. Cloning and Identification of Biosynthetic Gene Clusters -- 3. Analysis of Natural Product Pathways by PCR-Targeted Gene Replacement -- 4. In Vitro Transposon Mutagenesis -- 5. Heterologous Expression of Biosynthetic Gene Clusters -- 6. Reassembling Entire Gene Clusters by "Stitching" Overlapping Cosmid Clones -- 7. Conclusions -- Acknowledgments -- References -- Chapter 8: Methods for In Silico Prediction of Microbial Polyketide and Nonribosomal Peptide Biosynthetic Pathways from DNA Sequence Data -- 1. Introduction -- 2. Converting Type I PKSs to Structural Elements -- 3. Converting NRPS Domain Strings to Structural Elements -- 4. Concluding Remarks -- Acknowledgments -- References -- Chapter 9: Synthetic Probes for Polyketide and Nonribosomal Peptide Biosynthetic Enzymes -- 1. Introduction -- 2. Synthetic Probes of PKS and NRPS Mechanism -- 3. Synthetic Probes of PKS and NRPS Structure -- 4. Synthetic Probes for Proteomic Identification of PKS and NRPS Enzymes -- 5. Conclusions -- References -- Chapter 10: Using Phosphopantetheinyl Transferases for Enzyme Posttranslational Activation, Site Specific Protein Labeling and Identification of Natural Product Biosynthetic Gene Clusters from Bacterial Genomes -- 1. Introduction -- 2. Experimental Procedures. , 3. Conclusion -- References -- Chapter 11: Sugar Biosynthesis and Modification -- 1. Introduction -- 2. Deoxysugar Biosynthesis -- 3. Deoxysugar Transfer -- 4. Modification of the Glycosylation Pattern through Gene Inactivation -- 5. Modification of the Glycosylation Pattern through Heterologous Gene Expression -- 6. Modification of the Glycosylation Pattern through Combinatorial Biosynthesis -- 7. Gene Cassette Plasmids for Deoxysugar Biosynthesis -- 8. Generation of Glycosylated Compounds -- 9. Tailoring Modifications of the Attached Deoxysugars -- 10. Detection of Glycosylated Compounds -- Acknowledgments -- References -- Chapter 12: The Power of Glycosyltransferases to Generate Bioactive Natural Compounds -- 1. Introduction -- 2. Application of GTs in Producing Unnatural Bioactive Molecules -- References -- Chapter 13: Nonribosomal Peptide Synthetases: Mechanistic and Structural Aspects of Essential Domains -- 1. Introduction -- 2. Mechanistic and Structural Aspects of Essential NRPS Domains -- 3. Structural Insights into an Entire Termination Module -- References -- Chapter 14: Biosynthesis of Nonribosomal Peptide Precursors -- 1. Introduction -- 2. Precursors from Amino Acid Metabolism -- 3. Fatty Acid Precursor Biosynthesis -- 4. Polyketide Precursors -- 5. Glycosyl Building Blocks -- 6. Conclusion -- References -- Chapter 15: Plasmid-Borne Gene Cluster Assemblage and Heterologous Biosynthesis of Nonribosomal Peptides in Escherichia coli -- 1. Introduction -- 2. Biosynthetic Pathway of Nonribosomal Peptides -- 3. Echinomycin Biosynthetic Pathway -- 4. Construction of A Multigene Assembly on Expression Vectors -- 5. Heterologous Gene Expression and NRP Biosynthesis in E. coli -- 6. Self-Resistance Mechanism -- 7. Stability of Transformants Carrying Multiple Very Large Plasmids. , 8. Engineering of Heterologous NRP Biosynthetic Pathways in E. coli -- 9. Conclusion -- References -- Chapter 16: Enzymology of beta-Lactam Compounds with Cephem Structure Produced by Actinomycete -- 1. Introduction -- 2. Biosynthesis of Cephamycins: Enzymes and Genes -- 3. Early Steps Specific for Cephamycin Biosynthesis -- 4. Common Steps in Cephamycin-Producing Actinomycetes and Penicillin- or Cephalosporin-Producing Filamentous Fungi -- 5. Specific Steps for Tailoring the Cephem Nucleus in Actinomycetes -- 6. Regulation of Cephamycin C Production -- Acknowledgments -- References -- Chapter 17: Siderophore Biosynthesis: A Substrate Specificity Assay for Nonribosomal Peptide Synthetase-Independent Siderophore Synthetases Involving Trapping of Acyl-Adenylate Intermediates with Hydroxylamine -- 1. Introduction -- 2. NRPS-Dependent Pathways for Siderophore Biosynthesis -- 3. NRPS-Independent Pathway for Siderophore Biosynthesis -- 4. Hybrid NRPS/NIS Pathway for Petrobactin Biosynthesis -- 5. Hydroxamate-Formation Assay for NIS Synthetases -- References -- Chapter 18: Molecular Genetic Approaches to Analyze Glycopeptide Biosynthesis -- 1. Structural Classification of Glycopeptide Antibiotics -- 2. Methods for Analyzing Glycopeptide Biosynthesis -- 3. Investigation of Glycopeptide Biosynthetic Steps -- 4. Regulation, Self-Resistance, and Excretion -- 5. Linking Primary and Secondary Metabolism -- 6. Approaches for the Generation of New Glycopeptides -- Acknowledgments -- References -- Chapter 19: In Vitro Studies of Phenol Coupling Enzymes Involved in Vancomycin Biosynthesis -- 1. Introduction -- 2. Peptide Synthesis -- 3. Peptide Thioesters -- 4. In Vitro Assays with OxyB -- 5. Production and Purification of Enzymes -- References -- Chapter 20: Biosynthesis and Genetic Engineering of Lipopeptides in Streptomyces roseosporus -- 1. Introduction. , 2. Biosynthesis and Genetic Engineering of Daptomycin in S. rosesoporus -- 3. Sources of Genes for Combinatorial Biosynthesis -- 4. Genetic Engineering of Novel Lipopeptides -- 5. Concluding Remarks -- Acknowledgments -- References -- Chapter 21: In Vitro Studies of Lantibiotic Biosynthesis -- 1. Introduction -- 2. Mining Microbial Genomes for Novel Lantibiotics -- 3. Expression and Purification of Lantibiotic Precursor Peptides (LanAs) -- 4. Expression, Purification, and Assay of LanM Enzymes -- 5. Expression, Purification, and Assays of LanC Cyclases -- 6. The Protease Domain of Class II Lantibiotic Transporters -- 7. Additional Posttranslational Modifications in Lantibiotics -- References -- Chapter 22: Whole-Cell Generation of Lantibiotic Variants -- 1. Introduction -- 2. Variant Generation -- 3. Conclusions -- References -- Chapter 23: Cyanobactin Ribosomally Synthesized Peptides-A Case of Deep Metagenome Mining -- 1. Introduction -- 2. Some Remaining Questions -- 3. Obtaining Prochloron Cells and DNA -- 4. Chemical Analysis -- 5. Cyanobactin Gene Cloning and Identification -- 6. Heterologous Expression in E. coli -- 7. Deep Metagenome Mining -- 8. Enzymatic Analysis of Cyanobactin Biosynthesis -- 9. Applying Deep Metagenome Mining: Pathway Engineering -- Acknowledgments -- References -- Author Index -- Subject Index -- Colour Plates.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Biosynthesis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (463 pages)
    Edition: 1st ed.
    ISBN: 9780123946287
    Series Statement: Issn Series
    DDC: 572.45
    Language: English
    Note: Front Cover -- Natural Product Biosynthesis by Microorganisms and Plants, Part B -- Copyright -- Contents -- Contributors -- Preface -- Methods in Enzymology -- Section 1: Peptides -- Chapter 1: In Vivo Production of Thiopeptide Variants -- 1. Introduction -- 2. Generation of Thiopeptide Variants -- 2.1. Thiostrepton analogs -- 2.1.1. Overview -- 2.1.2. Thiostrepton variants obtained by precursor peptide mutagenesis -- 2.1.2.1. Deletion of tsrA from the S. laurentii chromosome -- 2.1.2.2. Fosmid engineering to generate complementation vector int-3A10 -- 2.1.2.3. Generation of an intermediate fosmid int-3A100 -- 2.1.2.4. Site-directed mutagenesis of tsrA -- 2.1.2.6. Evaluation of thiostrepton analog production in S. laurentii -- 2.1.3. Gene inactivation to produce thiostrepton analogs -- 2.1.3.1. Deletion of tsrU and tsrT from S. laurentii -- 2.1.3.2. Evaluation of thiostrepton analog production in S. laurentii -- 2.2. Thiocillin analogs -- 2.2.1. Overview -- 2.2.2. Thiocillin analogs obtained by precursor peptide mutagenesis -- 2.2.2.1. Construction of B. cereus DeltatclE-H -- 2.2.2.2. Generation of complementation vector pMGA-tclE-KI -- 2.2.2.3. Evaluation of thiocillin analog production in B. cereus -- 2.3. Nosiheptide analogs -- 2.3.1. Overview -- 2.3.2. Gene inactivation to produce nosiheptide analogs -- 2.3.2.1. Deletion of nosN and nosA in S. actuosus -- 2.3.2.3. Evaluation of nosiheptide analog production in S. actuosus -- References -- Chapter 2: Microviridin Biosynthesis -- 1. Introduction -- 2. Reconstitution In Vitro of the Cyclization Reactions of the Microviridin Biosynthetic Pathway from P. agardhii -- 2.1. Expression of GRASP-like ligase genes mvdC and mvdD -- 2.2. Expression of mvdB -- 2.3. Expression of His6-mvdE -- 2.4. LCMS analysis -- 2.5. Investigation of the lactonization/lactamization reaction in vitro. , 3. Influence of Leader Peptide on the Cyclization Reactions -- 4. Summary -- Acknowledgments -- References -- Chapter 3: Cyclotide Isolation and Characterization -- 1. Introduction -- 2. Isolation of Cyclotides from Plant Tissues -- 3. Isolation of Nucleic Acids Encoding Cyclotide Precursors -- 3.1. Isolating RNA -- 3.2. Primer design for PCR amplification of cyclotide-encoding genes -- 4. Mass Spectrometric Detection and Characterization of Cyclotides -- 4.1. Detection by reduction and alkylation -- 4.2. Sequencing following reduction and digestion -- 5. Structural Analysis of Cyclotides -- 6. Membranolytic Assays of Cyclotides -- 6.1. Preparation of lipid vesicles -- 6.2. Membrane binding by SPR -- 6.3. Vesicle leakage studies -- 7. Summary -- Acknowledgments -- References -- Chapter 4: Ribosomally Encoded Cyclic Peptide Toxins from Mushrooms -- 1. Introduction -- 2. Detection and Purification of Amanita Cyclic Peptide Toxins -- 2.1. Purification of Amanita cyclic peptides -- 2.1.1. Purification from fruiting bodies (mushrooms) -- 2.1.2. Purification from liquid culture of G. marginata -- 2.1.3. Purification of α-amanitin from G. marginata cultured on petri plates -- 3. Identification of Cyclic Peptide Genes in Amanita and Other Fungi -- 4. Purification and Assay of Prolyl Oligopeptidase (POP) from Mushrooms -- 4.1. Isolation of POP from fruiting bodies of C. apala -- 4.1.1. Preparation of crude extract -- 4.1.2. HPLC purification of POP -- 4.1.2.1. Hydrophobic interaction chromatography -- 4.1.2.2. Hydroxyapatite chromatography -- 4.1.2.3. Anion exchange chromatography -- 4.2. Assays for POP -- 4.2.1. Assay with chromogenic substrate -- 4.2.2. Assay with synthetic peptides -- 5. Immunodetection of POP in Mushroom Tissues -- 5.1. Preparation of antibodies -- 5.2. Immunological and microscopic methods -- 6. Summary -- Acknowledgments -- References. , Chapter 5: The Pictet-Spengler Mechanism Involved in the Biosynthesis of Tetrahydroisoquinoline Antitumor Antibiotics: A Novel Function for a Nonribosomal Peptide Synthetase -- 1. Introduction -- 2. Biosynthetic Analysis of THIQ Core Scaffold Assembly -- 2.1. Previous biosynthetic studies on saframycin family members -- 2.2. Biogenesis of saframycin A based on bioinformatic analysis -- 3. Reaction Mechanism for Constructing a Pentacyclic THIQ Core Skeleton Catalyzed by a Novel Function for a Single NRPS Modul -- 4. Comparison Between Typical Peptide Synthesis and the Pictet-Spengler Reaction Catalyzed by NRPS Machinery -- 5. Reaction Profiles Affected by the Chain Length of the Acyl Moiety -- 6. Multiple Roles for the Fatty Acyl Chain During the Maturation Process in Late-Stage Biosynthesis -- 7. Methods for Substrate Synthesis, Enzyme Preparation, and Assay Conditions -- 7.1. Synthesis of the substrates -- 7.1.1. Synthesis of the fatty acyl-peptidyl CoA esters -- 7.1.2. Synthesis of the fatty acyl-peptidyl aldehydes -- 7.2. Overexpression, purification, and phosphopantetheinylation of SfmC -- 7.2.1. Construction of SfmC expression vectors -- 7.2.2. Overexpression and purification -- 7.2.3. Phosphopantetheinylation of SfmC -- 7.3. Enzymatic reactions with saframycin NRPS SfmC -- 7.3.1. SfmC-catalyzed reaction using the fatty-acyl-peptidyl-CoA thioester or the fatty acyl-peptidyl aldehyde -- 7.3.2. Large-scale enzymatic reaction for preparation of presaframycins -- 8. Conclusion -- Acknowledgments -- References -- Section 2: Other Compounds -- Chapter 6: Discovery and Biosynthesis of Phosphonate and Phosphinate Natural Products -- 1. Introduction -- 2. Spectrum of Phosphonate Natural Products: Structures and Bioactivities -- 3. Biosynthetic Pathways -- 4. Screening Bacteria for Phosphonate Producing Gene Clusters. , 4.1. Protocol to identify pepM or ppD genes -- 5. Purification of Phosphonates/Phosphinates -- 5.1. Screening by NMR spectroscopy -- 5.2. Protocol to distinguish between phosphonates and cyclic phosphate esters -- 5.3. Phosphonate purification strategies -- 5.4. Protocol to remove salts -- 6. Structural Elucidation of Phosphonates -- 6.1. 31P NMR spectroscopy -- 6.2. Liquid chromatography-Fourier transform mass spectrometry -- 7. A Wealth of Unusual Biosynthetic Enzymes -- 8. Conclusion and Outlook -- Acknowledgments -- References -- Chapter 7: RlmN and AtsB as Models for the Overproduction and Characterization of Radical SAM Proteins -- 1. Introduction -- 2. RlmN as a Model for Gene Expression and Overproduction of RS Proteins -- 2.1. General cloning strategy -- 2.2. Gene expression and protein overproduction -- 2.3. Protocol for expression of the rlmN gene -- 3. RlmN as a Model for Purification of RS Proteins -- 3.1. Excluding O2 -- 3.2. Protocol for purifying RlmN -- 3.3. Chemical reconstitution of as-isolated RlmN -- 3.4. Protocol for chemical reconstitution of as-isolated RlmN -- 3.5. Removing adventitiously bound iron and sulfide from chemically reconstituted RS proteins -- 4. Overproduction and Purification of E. coli Flavodoxin and Flavodoxin Reductase -- 4.1. Protocol for overexpressing E. coli genes for Flv and Flx -- 4.2. Protocol for purification of Flv or Flx -- 5. AtsB as a Model for Determination of Configuration and Stoichiometry of Iron-Sulfur Clusters in RS Enzymes -- 5.1. Strategy for determining iron-sulfur cluster configuration and stoichiometry -- 5.2. Protocol for preparation of iron-sulfur proteins for amino acid analysis -- 5.3. Protocol for preparation of samples for Mössbauer and EPR spectroscopies -- 6. Activity Determination of RS Enzymes -- 6.1. Protocol for analysis of SAM-related products in RS reactions. , 6.2. Protocol for standard curve preparation of SAM-related products -- 6.3. Protocol for HPLC quantification of SAM-related products -- Acknowledgments -- References -- Chapter 8: Fe(II)-Dependent, Uridine-5-Monophosphate α-Ketoglutarate Dioxygenases in the Synthesis of 5-Modified Nucleosides -- 1. Introduction -- 2. Methods -- 2.1. Bioinformatic analysis of LipL and homologous dioxygenases -- 2.2. Cloning and heterologous expression -- 2.3. SEC-RI-MALLS-ICP-MS to determine metalloprotein stoichiometry -- 2.4. Activity assays -- 2.4.1. Detection of succinate using an enzyme-coupled reaction -- 2.4.2. HPLC analysis -- 2.4.3. Malachite-green binding assay -- 3. Summary -- Acknowledgments -- References -- Section 3: Tailoring Reactions -- Chapter 9: Tailoring Reactions Catalyzed by Heme-Dependent Enzymes: Spectroscopic Characterization of the L-Tryptophan-Nitrating Cytochrom P450 TxtE -- 1. Introduction -- 1.1. Cytochromes P450 -- 1.2. The catalytic mechanisms of CYPs -- 1.3. CYP tailoring enzymes in thaxtomin phytotoxin biosynthesis -- 2. Overexpression, Purification, and Characterization of the Novel Nitrating CYP TxtE -- 2.1. His6-TxtE purification -- 3. Protein Characterization Using UV-vis Spectroscopy -- 3.1. Recording the spectrum of the Fe(III) resting state -- 3.2. Reduction of the ferric heme to ferrous heme using sodium dithionite -- 3.3. Recording the soret spectrum of the ferrous-CO complex -- 4. Ligand and Substrate Binding -- 4.1. Qualitative binding assays: Type I difference spectra -- 4.1.1. Dual beam spectrophotometer -- 4.1.2. Single beam spectrophotometer -- 4.2. Qualitative binding assays: Type II spectra -- 4.2.1. Generation of amine Fe(III) complexes (tryptamine, imidazole, clotrimazole, bifonazole) -- 4.2.2. Generation of an Fe(III)-NO complex -- 5. Summary -- Acknowledgment -- References. , Chapter 10: Oxidative Tailoring Reactions Catalyzed by Nonheme Iron-Dependent Enzymes: Streptorubin B Biosynthesis as an Example.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Biosynthesis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (487 pages)
    Edition: 1st ed.
    ISBN: 9780123946270
    Series Statement: Issn Series
    DDC: 572.45
    Language: English
    Note: Front Cover -- Natural Product Biosynthesis by Microorganisms and Plants, Part A -- Copyright -- Contents -- Contributors -- Preface -- Methods in Enzymology -- Section1:Terpenoids -- Chapter 1:Steady-State Kinetic Characterization of Sesquiterpene Synthases by Gas Chromatography-Mass Spectroscopy -- 1. Introduction -- 1.1. The vial assay for enzyme kinetics -- 1.2. Steady-state kinetics and the Michaelis-Menten model -- 2. Experimental Components and Considerations -- 2.1. Enzyme purification and quantification -- 2.2. Substrates -- 2.3. Buffer and pH -- 2.4. Metal ions -- 2.5. Internal standard -- 2.6. Vial assay method -- 2.7. GC-MS instrument and run parameters -- 2.8. Additional points -- 3. Pilot Experiments -- 3.1. Analyte detection and quantification -- 3.2. Instrument calibration -- 3.3. Linear range of protein concentration: Measuring kcat apparent -- 4. Steady-State Kinetic Experiments -- 4.1. Reaction velocity versus substrate concentration -- 4.2. Steady-state kinetics experiment -- 5. Data Handling/Processing -- 6. Summary -- References -- Chapter 2: Automating Gene Library Synthesis by Structure-Based Combinatorial Protein Engineering: Examples from Plant Sesquiterpene Synthses -- 1. Overview -- 2. Plasmid Library Synthesis -- 2.1. Deconstructing the gene -- 2.2. Cloning of the three-plasmid system -- 3. Optimization of SCOPE PCR Conditions -- 4. Generic SCOPE Method -- 4.1. Primer design -- 4.2. Fragment amplification -- 4.3. SCOPE synthesis: Recombination -- 4.4. SCOPE synthesis: Amplification -- 5. Applications of SCOPE Synthesis -- 5.1. Synthesis of complex mixtures of diverse mutants -- 5.1.1. Deconstructing the gene -- 5.1.2. Plasmid library synthesis -- 5.1.3. SCOPE synthesis -- 5.2. Synthesis of arrays of individual mutants -- 5.2.1. Deconstructing the gene -- 5.2.2. Plasmid library synthesis and fragment amplification. , 5.2.3. SCOPE synthesis -- 6. Troubleshooting -- 6.1. Presence of alternative amplification products -- 6.2. Low levels of full-length gene product -- 7. Conclusions -- References -- Chapter 3:In Planta Transient Expression Analysis of Monoterpene Synthases -- 1. Introduction -- 2. Plant Transformation Vector Construction -- 2.1. Materials -- 2.2. Preparing attB-PCR products using attB adaptor PCR -- 2.3. Protocol for destination vector cloning -- 3. Agrobacterium-Mediated Transient Expression -- 3.1. Materials -- 3.2. Preparation of competent A. tumefaciens -- 3.3. Transformation of A. tumefaciens GV3101 -- 3.4. Preparation of transformed Agrobacterium for transient expression -- 3.5. Transient transformation of N. benthamiana leaves -- 4. Agrobacterium Preparation for High-Throughput Analysis -- 5. Product Identification -- 5.1. Headspace volatile analysis -- 6. Transient Expression of a Kiwifruit Linalool Synthase -- 6.1. Vectors and cloning -- 6.2. Infiltration setup -- 6.3. Solvent extraction and analysis -- 6.4. Headspace trapping and analysis -- 6.5. Results and discussion -- 7. Conclusions -- Acknowledgments -- References -- Chapter 4:Natural Rubber Biosynthesis in Plants: Rubber Transferase -- 1. Introduction -- 2. Preparing Samples for Assaying Rubber Transferase Activity -- 2.1. Rubber particle-bound activity -- 2.1.1. Purification of enzymatically active rubber particles -- 2.1.2. Enzyme stability -- 2.1.3. Assay system purity -- 2.1.4. Sources of competing enzymes and the separate roles of cis and trans prenyl transferases in rubber biosynthesis -- 3. The Rubber Transferase Assay -- 3.1. Assay method -- 3.2. Kinetic analyses -- 3.3. Regulation of molecular weight -- 4. Identification and Purification of Rubber Transferase -- 4.1. Rubber transferase is a distinct cis prenyl transferase -- 4.2. Photoaffinity labeling. , 4.2.1. A photoaffinity labeling protocol -- 4.2.2. Purification of labeled proteins -- 4.3. Antibodies -- 4.3.1. Immunoinhibition and immunoprecipitation -- 4.3.2. Latex-free animals -- 5. Qualitative Protein Analysis -- 6. Protein Quantification -- 7. Summary -- Acknowledgments -- References -- Chapter 5:Discovery and Characterization of Terpenoid Biosynthetic Pathways of Fungi -- 1. Introduction -- 2. Identification, Cloning, and Characterization of Terpene Synthases -- 2.1. Identification and cloning of terpene synthase genes without sequence information -- 2.2. Identification and cloning of terpene synthase genes using sequence information -- 2.3. Characterization of terpene synthase gene function -- 3. Structural Characterization and Engineering of Fungal Terpene Synthase Activities -- 3.1. Site-directed mutagenesis guided by crystal structures -- 3.2. Exploring terpene synthase structure through molecular models -- 4. Identification and Characterization of Biosynthetic Gene Clusters -- 4.1. Characteristics of fungal biosynthetic gene clusters -- 4.2. Obtaining a biosynthetic cluster sequence -- 4.2.1. Identifying an anchor gene sequence -- 4.2.2. Obtaining a sequencing dataset -- 4.2.2.1. Small-scale sequencing approaches -- 4.2.2.2. Whole-genome sequencing -- 4.3. Cluster annotation -- 4.4. Characterization of biosynthetic clusters -- 4.4.1. Gene knockout and complementation studies -- 4.4.2. Pathway construction in a heterologous host -- 5. Genome Mining for Sesquiterpene Synthases -- 5.1. Phylogeny-guided analysis of terpene synthase gene families -- 6. Conclusions -- Acknowledgments -- References -- Chapter 6:Menaquinone Biosyntheses in Microorganisms -- 1. Introduction -- 2. Futalosine Pathway -- 2.1. Tracer experiments clearly showed the presence of an alternative pathway -- 2.2. Genes participating in the alternative pathway. , 2.3. Intermediates in the alternative pathway -- 2.3.1. Isolation of an intermediate accumulated by the SCO4327-disruptant -- 2.3.2. Identification of the intermediate next to FL -- 2.3.3. Identification of the intermediate following DHFL -- 2.3.4. Identification of the intermediate following cyclic DHFL -- 2.4. The early biosynthetic steps -- Acknowledgments -- References -- Chapter 7:Diversity and Analysis of Bacterial Terpene Synthases -- 1. Terpenoid Metabolites from Bacterial Cultures -- 2. Bacterial Terpene Synthases -- 2.1. Monoterpene synthases -- 2.2. Sesquiterpene synthases -- 2.3. Diterpene synthases -- 3. Methods for the Study of Bacterial Terpene Synthases -- 3.1. Bioinformatic analysis of bacterial terpene synthases -- 3.1.1. Properties of terpene synthases and database search procedures -- 3.1.2. Genome mining of bacterial terpene synthases -- 3.2. Expression of genes encoding bacterial terpene synthases in heterologous hosts -- Protocol 1. Construction of expression cassette on integrating vector for terpene synthase gene of interest -- Protocol 2. Introduction of recombinant integrating plasmid into S. avermitilis SUKA17 -- Protocol 3. Cultivation for the production of terpene compounds and analysis of products -- References -- Chapter 8: Platensimycin and Platencin Biosynthesis in Streptomyces platensis, Showcasing Discovery and Characterization of Novel Bacteria Diterpene Synthases -- 1. Introduction -- 2. Methods -- 2.1. In vivo confirmation of PtmT1 and PtmT3 as DTSs in PTM and PTN biosynthesis -- 2.1.1. Bioinformatic analyses to identify candidate DTSs -- 2.1.2. Construction of a gene replacement or deletion on an isolated cosmid -- 2.1.3. Replacement of the DTS gene in vivo with the antibiotic resistance cassette -- 2.1.4. Southern analysis to verify the mutant strain genotype. , 2.1.5. HPLC analysis to determine the mutant strain chemotype -- 2.2. In vivo confirmation of ptmT3 encoding a DTS by heterologous expression -- 2.2.1. Construction of heterologous expression strain -- 2.2.2. Structural validation of the diterpenoids produced in heterologous hosts -- 2.3. In vitro characterization of PtmT2 and PtmT3 as DTSs in PTM biosynthesis -- 2.3.1. Expression, overproduction, and purification of PtmT2 and PtmT3 from E. coli -- 2.3.2. Synthesis of GGDP from geranylgeraniol -- 2.3.3. Functional characterization of PtmT2 as an ent-CDP synthase -- 2.3.4. Functional characterization of PtmT3 as an ent-kauran-16-ol synthase -- 3. Conclusions -- Acknowledgment -- References -- Section 2:Alkaloids andGlucosinolates -- Section 2: Alkaloids and Glucosinolates -- Chapter 9:Strategies for Engineering Plant Natural Products: The Iridoid-Derived Monoterpene Indole Alkaloids of Catharanthus roseus -- 1. Introduction -- 2. Metabolic Engineering Strategies -- 2.1. Precursor-directed biosynthesis -- 2.1.1. Example of directed biosynthesis of monoterpene indole alkaloids -- 2.1.2. Methods for precursor-directed biosynthesis in C. roseus seedlings and hairy root cultures -- 2.2. Mutasynthesis -- 2.2.1. Example of mutasynthesis for monoterpene indole alkaloids -- 2.2.2. Methods for mutasynthesis in C. roseus -- 2.3. Incorporation of engineered pathway enzymes in biosynthesis -- 2.3.1. Example of incorporation of an engineered pathway enzyme in C. roseus -- 2.3.2. Methods for incorporation of an engineered pathway enzyme in C. roseus -- 3. Conclusions and Future Directions -- References -- Chapter 10:Discovery and Functional Analysis of Monoterpenoid Indole Alkaloid Pathways in Plants -- 1. Introduction -- 2. Enzyme Assays for MIA Pathway Steps -- 2.1. Tabersonine-16-hydroxylase assay coupled to 16-OMT -- 2.2. Tabersonine 6,7-epoxidase assay. , 2.3. Tabersonine 19 hydroxylase assay.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...