GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Singapore :Springer,
    Keywords: Bioremediation. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (706 pages)
    Edition: 1st ed.
    ISBN: 9789811943201
    DDC: 628.5
    Language: English
    Note: Intro -- Preface -- Acknowledgments -- Contents -- About the Editors -- Part I: Bioremediation and Biodegradation -- 1: Bioremediation and Functional Metagenomics: Advances, Challenges, and Opportunities -- 1.1 Introduction -- 1.2 Bioremediation -- 1.3 History of Bioremediation -- 1.4 Bioremediation Successes -- 1.5 Mechanism of Bioremediation -- 1.6 Microorganisms Used in Bioremediation -- 1.6.1 Fungi -- 1.6.1.1 Phanerochaete Chrysosporium -- 1.7 Factors Affecting Bioremediation -- 1.7.1 Biotic Factors -- 1.7.1.1 The Availability of Bacteria That Degrade Hydrocarbons -- 1.7.1.2 Competition and Cooperation Among Bacteria -- 1.7.1.3 Exogenous and Indigenous Hydrocarbon-Degrading Bacteria -- 1.7.1.4 Number of Hydrocarbon-Degrading Bacteria -- 1.7.1.5 Redox Potential of the Bacteria -- 1.7.1.6 Effect of Biosurfactants -- 1.7.2 Abiotic Factors -- 1.7.2.1 Contaminant Physical and Chemical Properties -- 1.7.2.2 Hydrocarbon Concentration -- 1.7.2.3 Nutrient Availability -- 1.7.2.4 Oxygen Availability -- 1.7.2.5 Moisture Availability -- 1.7.2.6 Bioavailability -- 1.8 Bioremediation Types -- 1.8.1 Ex Situ Bioremediation -- 1.8.1.1 Treatment in the Solid Phase -- 1.8.1.2 Slurry-Phase Bioremediation -- 1.8.2 In Situ Bioremediation -- 1.9 Bioremediation Approaches for Environmental Clean-Up -- 1.9.1 Ex Situ Bioremediation Approaches -- 1.9.1.1 Biopile -- 1.9.1.2 Biofilter -- 1.9.1.3 Land Farming -- 1.9.1.3.1 Composting -- 1.9.1.4 Bioreactor -- 1.9.2 In Situ Bioremediation Approaches -- 1.9.2.1 Bioventing -- 1.9.2.2 Biosparging -- 1.9.2.3 Bioslurping -- 1.10 Metagenomics -- 1.11 Metagenomics in Bioremediation Process -- 1.12 Metagenomics Research in a Contaminated Environment -- 1.12.1 Sampling from Contaminated Site -- 1.12.2 Extracting the DNA from Contaminated Samples -- 1.12.3 Metagenome Analysis -- 1.12.3.1 Targeted Metagenomics Using a Library. , 1.12.3.1.1 Creating a Metagenomics Library -- 1.12.3.1.2 Screening of Metagenomic Clones -- 1.12.3.1.2.1 Screening Based on a Sequence -- 1.12.3.1.2.2 Function-Driven Sequence -- 1.12.4 Direct Sequencing of Metagenomics -- 1.12.5 Next-Generation Sequencing -- 1.12.6 Bioinformatics Analysis -- 1.12.7 Assembly -- 1.12.8 Binning -- 1.12.9 Annotation -- 1.13 Metagenomics in Bioremediation: Current Challenges and Future -- 1.14 Conclusion -- References -- 2: Bioremediation: Gaining Insights Through Metabolomics -- 2.1 Introduction -- 2.2 Impact of Metabolomics on Bioremediation -- 2.3 Application of Computer in Metabolomic Study -- 2.4 Application of Metabolomics in Space Bioremediation -- 2.5 Future Advancement -- 2.6 Conclusion -- References -- 3: Metagenomics, Microbial Diversity, and Environmental Cleanup -- 3.1 Introduction -- 3.2 Conventional Methods of Gene Sequencing -- 3.2.1 Polymerase Chain Reaction (PCR) -- 3.2.2 Fluorescence In Situ Hybridization (FISH) -- 3.2.3 Amplified Ribosomal DNA Restriction Analysis -- 3.2.4 Ribosomal Intergenic Spacer Analysis -- 3.2.5 DNA Microarrays -- 3.2.6 Randomly Amplified Polymorphic DNA (RAPD) Analysis -- 3.3 Next-Generation Sequencing Techniques -- 3.3.1 Pyrosequencing Technology -- 3.3.2 Roche 454 (GS FLX Plus) -- 3.3.3 Reverse Terminator Technology -- 3.3.3.1 Illumina Solexa -- 3.3.3.2 Ion Torrent -- 3.3.3.3 Sequencing by Ligation Technology -- 3.3.3.4 ABI SOLiD -- 3.4 Metagenomics Sequencing and Its Framework -- 3.5 Tools for Metagenomic Data Analysis -- 3.6 Bioinformatics Tools for Functional Analysis of Metagenome -- 3.7 Application of Metagenomics -- 3.7.1 Food Industries -- 3.7.2 Novel Bioactive Discovery -- 3.7.3 Novel Antimicrobials Discovery -- 3.7.4 Xenobiotic Degradation -- 3.8 Importance of Metagenomics in Bioremediation of Pollutants -- 3.9 Conclusion and Future Perspectives -- References. , 4: Plant-Microbe Associations in Remediation of Contaminants for Environmental Sustainability -- 4.1 Introduction -- 4.2 Plant-Microbe Interaction -- 4.2.1 Endophytic Microbiome -- 4.2.2 Plant Growth-Promoting Rhizobacteria -- 4.2.3 Plant-Released Signals -- 4.2.4 Microbial Signals -- 4.2.5 Quorum Sensing -- 4.3 Remediation of Contaminants by Plant-Microbe Combination -- 4.3.1 Removal of Pollutants from Aquatic Environments -- 4.3.2 Removal of Pollutants from Terrestrial Environment -- 4.3.3 Removal of Pollutants from Atmosphere -- 4.4 Examples of Bacterial-Assisted Phytoremediation -- 4.5 Microbial-Assisted Phytoextraction -- 4.6 Microbial-Assisted Phytostabilisation -- 4.7 Microbial-Assisted Phytovolatilisation -- 4.8 Rhizoremediation -- 4.9 Phytostimulation -- 4.10 Microbial-Assisted Phytodegradation -- 4.11 Challenges Faced During Remediation by Plant-Microbe Associations -- 4.12 Conclusion -- References -- 5: Recent Trends in Bioremediation of Heavy Metals: Challenges and Perspectives -- 5.1 Introduction -- 5.2 Heavy Metal Pollution -- 5.3 Bioremediation of Heavy Metals: Principles, Mechanisms and Factors -- 5.3.1 Principles of Bioremediation -- 5.3.2 Mechanisms of Bioremediation -- 5.3.3 Factors Affecting Bioremediation -- 5.4 Techniques for Detection and Assessment of Heavy Metals in the Environment -- 5.5 Techniques of Bioremediation -- 5.5.1 In Situ Techniques -- 5.5.2 Ex Situ Techniques -- 5.6 Plant-Mediated Heavy Metal Removal -- 5.7 Role of Microbes in Heavy Metal Removal -- 5.8 Recent Advancement in Heavy Metal Removal Techniques -- 5.9 Advantages and Limitations -- 5.10 Application and Future Prospects of Bioremediation -- 5.11 Conclusions -- References -- 6: Enzyme Technology for Remediation of Contaminants in the Environment -- 6.1 Introduction -- 6.2 Enzyme as Contaminant Sterilizing Agent -- 6.3 Pollutants. , 6.3.1 Organic Pollutants -- 6.3.1.1 Nitro Compounds -- 6.3.1.2 Dyes -- 6.3.1.3 Organophosphorus Hydrolase -- 6.3.1.4 Cytochrome P450 Monooxygenase -- 6.3.1.5 Peroxidase from Horseradish -- 6.3.2 Inorganic Pollutants -- 6.3.2.1 Arsenic -- 6.3.2.2 Chromium -- 6.3.2.3 Mercury -- 6.3.2.4 Lead -- 6.4 Microbial Enzymes in Bioremediation -- 6.4.1 Microbial Oxidoreductase -- 6.4.2 Microbial Laccases -- 6.4.3 Microbial Oxygenases -- 6.4.3.1 Monooxygenases -- 6.4.3.2 Microbial Dioxygenases -- 6.5 Strategies for Overcoming Difficulties Associated with the Enzyme Technology -- 6.6 Plants and their Associated Enzymes: A Agents for Decontamination -- 6.7 Conclusion -- References -- Part II: Environmental Pollution and Wastewater Treatment -- 7: Environmental Toxicity, Health Hazards, and Bioremediation Strategies for Removal of Microplastics from Wastewater -- 7.1 Introduction -- 7.2 Sources of Microplastics in Wastewater -- 7.3 Properties of Microplastics -- 7.4 Ecotoxicity and Health Hazards of Microplastics -- 7.5 Factors Affecting Toxicity of Microplastics -- 7.6 Techniques for Characterization of Microplastics in Wastewater -- 7.7 Bioremediation Strategies for Microplastics -- 7.7.1 Bacterial Degradation of Microplastics -- 7.7.2 Fungal Degradation of Microplastics -- 7.7.3 Microalgal Degradation of Microplastics -- 7.7.4 Microbial Consortia in Microplastics Degradation -- 7.7.5 Microbial Biofilm in Microplastics Degradation -- 7.7.6 Bioreactor Systems for Microplastic Removal from Wastewater -- 7.8 Challenges and Future Perspectives -- 7.9 Conclusion and Recommendations -- References -- 8: Microbial Community Composition and Functions in Activated Sludge Treatment System -- 8.1 Introduction -- 8.2 Characteristics of Activated Sludge -- 8.3 Microbial Diversity in Activated Sludge. , 8.4 Enzyme Activity and Associated Physiological Function of Microbiome in Activated Sludge -- 8.5 Antibiotic Resistance Genes of Activated Sludge -- 8.6 Future Challenges and Opportunities -- 8.7 Conclusion -- References -- 9: Decontamination and Management of Industrial Wastewater Using Microorganisms Under Aerobic Condition -- 9.1 Introduction -- 9.2 Physical and Chemical Attributes of Wastewater -- 9.3 Biological Parameters of Wastewater -- 9.4 Aerobic Treatment of Wastewater -- 9.5 Advanced Biological Wastewater Treatment Technologies -- 9.6 Treatment of Sludge After Treatment of Wastewater -- 9.7 Management and Regulation for Quality Control and Quality Assurance of WTPs -- 9.8 Conclusions -- References -- 10: Omics in Industrial Wastewater Treatment -- 10.1 Introduction -- 10.2 The Composition of Industrial Wastewater -- 10.2.1 Food and Dairy Industry -- 10.2.2 Paper and Pulp Industry -- 10.2.3 Textile Industry -- 10.2.4 Mining and Quarry Industry -- 10.2.5 Chemical Industry -- 10.2.6 Leather and Tannery Industry -- 10.3 Industrial Wastewater Treatment Methods -- 10.3.1 Physical Wastewater Treatment Processes -- 10.3.2 Chemical Wastewater Treatment Processes -- 10.3.3 Biological Treatment of Wastewater -- 10.3.3.1 Aerobic Treatment -- 10.3.3.2 Anaerobic Treatment -- 10.4 Application of Omics in Biological Treatment -- 10.4.1 Omics Approaches in Wastewater Treatment -- 10.4.2 Omics in Remediation of Organic Pollutants -- 10.4.3 Omics for the Remediation of Metal Species -- 10.4.4 Genomic Information for Industrial Wastewater Treatment -- 10.5 Challenges, Limitations, and Futuristic Approaches -- References -- 11: Microalgae in Wastewater Treatment and Biofuel Production: Recent Advances, Challenges, and Future Prospects -- 11.1 Introduction -- 11.2 Benefits of Using Microalgae for Environmental Applications. , 11.3 Techniques for Microalgae Culture.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Earthworms. ; Organic wastes. ; Vermicomposting. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (400 pages)
    Edition: 1st ed.
    ISBN: 9780443160516
    Series Statement: Waste and the Environment: Underlying Burdens and Management Strategies Series
    DDC: 363.7288
    Language: English
    Note: Front Cover -- EARTHWORM TECHNOLOGY IN ORGANIC WASTE MANAGEMENT -- EARTHWORM TECHNOLOGY IN ORGANIC WASTE MANAGEMENT -- Copyright -- Contents -- Contributors -- About the editors -- 1 - Earthworm-associated bacterial community and its role in organic waste decomposition -- 1. Introduction -- 2. Earthworms -- 3. Pollutant degradation mechanisms in vermicomposting -- 4. Bacterial diversity in the alimentary canal -- 5. Vermicast -- 5.1 Physical properties -- 5.2 Microbial properties -- 6. Vermiwash -- 7. Molecular techniques to detect earthworm gut microbes -- 8. Conclusion -- Acknowledgment -- References -- 2 - How do earthworms affect the microbial community during vermicomposting for organic waste recycling? -- 1. Introduction -- 2. Earthworm-microorganism interactions: Selectivity and diet -- 2.1 Bacteria -- 2.2 Fungi -- 2.3 Protozoa -- 3. Microbial abundance and diversity changes during vermicomposting -- 4. Microbial structural changes during vermicomposting -- 5. Microbial functional changes during vermicomposting -- 6. Substate effects on bacterial community during vermicomposting -- 7. Physicochemical properties affecting microbial changes during vermicomposting -- 8. Conclusion -- References -- 3 - Exploring the transfer and transformation of Polycyclic Aromatic Hydrocarbons in vermifiltration for domestic w ... -- 1. Introduction -- 2. Materials and methods -- 2.1 Experimental setup and operation -- 2.2 Chemical analysis and sludge yield coefficient calculation -- 2.3 Sample pretreatment and extraction -- 2.4 Sequential solvent extraction of polycyclic aromatic hydrocarbons -- 2.5 GC/MS analysis -- 2.6 FT-IR spectrum analysis -- 2.7 Three-dimensional fluorescence analyses for water-extractable organic matter -- 2.8 Data analysis -- 3. Results and discussion -- 3.1 Determination of 16 EPAs originating in sewage. , 3.2 Total removal performance of 16 PAHs by vermifiltration -- 3.3 Transferring of polycyclic aromatic hydrocarbons during vermifiltration treatment -- 3.4 Insights into polycyclic aromatic hydrocarbon removal based on molecular weight -- 3.5 Stabilization of polycyclic aromatic hydrocarbons in waste sludge -- 4. Conclusions -- Acknowledgments -- References -- 4 - Vermiremediation of organic wastes: vermicompost as a powerful plant growth promoter -- 1. Introduction -- 2. Vermicompost and its production -- 2.1 Factors influencing vermicomposting -- 2.1.1 pH -- 2.1.2 Moisture -- 2.1.3 C:N ratio -- 2.1.4 Temperature -- 2.2 Microbial community in vermicomposting -- 3. Vermicompost as a plant growth promoter -- 3.1 Stimulation of plant growth using vermicompost infused with beneficial microbes -- 3.2 Stimulation of plant growth by humic substances -- 4. Vermicompost as a plant disease suppression and pest control -- 5. Conclusions and future perspectives -- References -- Further reading -- 5 - Vermiremediation of plant agro waste to recover residual nutrients and improve crop productivity -- 1. Introduction -- 2. Vermiremediation technology -- 2.1 Basic process -- 2.1.1 Vermiaccumulation and vermiextraction -- 2.1.2 Vermitransformation -- 2.1.3 Drilodegradation -- 2.2 Vermiremediation for a cleaner environment and sustainable agriculture (nutrient amendment and degradation of toxins throug ... -- 3. Activity of suitable earthworm species and their associated microbes in composting and remediation -- 3.1 Earthworm species (Perionyx ceylanensis, Metaphire posthuma, Perionyx excavatus, Polypheretima elongata, Eudrilus eugeniae, ... -- 3.2 Structural and functional profiling of microbial diversity in the compost -- 4. Vermiremediation of different plant agro waste -- 4.1 Green manure amended pressmud -- 4.2 Patchouli bagasse mixed with cow dung. , 4.3 Jute mill waste -- 4.4 Lantana camara biomass -- 4.5 Vegetable waste and tree leaves -- 4.6 Pineapple waste -- 4.7 Waste biomass of medicinal herbs mixed with cow dung -- 4.8 Coir pith -- 4.9 Spent mushroom substrate combined with agro-residues -- 4.10 Leafy waste of cauliflower and cabbage -- 4.11 Distillation waste of Citronella plant -- 4.12 Lignocellulosic green waste of Saccharum spontaenum -- 4.13 Cassava peel waste -- 4.14 Banana crop waste -- 4.15 Sugarcane trash -- 4.16 Wetland plant waste -- 4.17 Crop residues -- 4.18 Coffee pulp -- 4.19 Oil palm empty fruit bunch -- 4.20 Water hyacinth and Salvinia sp -- 5. Different properties of plant agro waste compost -- 5.1 Biocidal properties of plant compost -- 5.1.1 Bacterial pathogen inhibition by Lantana compost -- 5.1.2 Tea-based compost inhibits the growth of Rhizoctonia solani in potato plants -- 5.2 Vermicompost's impact on various crop yields -- 6. Conclusion -- Acknowledgments -- References -- Further reading -- 6 - Biochemical alterations of vermicompost produced from Eichhornia crassipes (water hyacinth) and cattle dung -- 1. Introduction -- 2. Materials and methods -- 2.1 Work site -- 2.2 Setting up units -- 2.3 Data collection and analyses -- 3. Results and discussion -- 3.1 Electrical conductivity -- 3.2 pH -- 3.3 Organic carbon -- 3.4 Nitrogen -- 3.5 Phosphate -- 3.6 Potassium -- 3.7 Calcium -- 3.8 Magnesium -- 3.9 Economic analysis -- 4. Conclusion -- References -- 7 - Use of vermicompost and vermiwash for the growth and production of tomatoes (Lycopersicon esculentum Mill.): A ... -- 1. Introduction -- 1.1 Vermicompost -- 1.2 Vermiwash -- 1.3 Soil properties and impact of vermicompost and vermiwash -- 1.4 Impact of vermicompost and vermiwash on plant growth parameters and productivity -- 1.5 Cultivation of tomato (Lycopersicon esculentum Mill.) -- 2. Materials and methods. , 2.1 Vermiwash production -- 2.1.1 Earthworm collection -- 2.1.2 Establishment of vermiwash units -- 2.1.3 Experimental design -- 2.1.4 Observation and measurements -- 2.1.5 Physicochemical analysis -- 2.2 Crop cultivation (tomatoes) -- 2.2.1 Experimental design -- 2.2.2 Sowing to transplanting -- 2.2.3 Fertilization -- 2.2.4 Data collection -- 3. Results and discussion -- 3.1 Vermicompost: physicochemical properties -- 3.2 Vermiwash: physicochemical properties -- 3.3 Cultivation of tomato plants -- 3.3.1 Climatic conditions -- 3.4 Soil: physicochemical properties -- 3.5 Greenhouse experiment -- 3.5.1 Plant height -- 3.5.2 Stem thickness -- 3.5.3 Biomass and root length -- 3.5.4 Production -- 3.6 Field trials -- 3.6.1 Plant height -- 3.6.2 Stem thickness -- 3.7 Biomass and root length -- 3.7.1 Production -- 4. Overall discussion -- 5. Conclusion -- References -- 8 - Earthworm mediated amelioration of heavy metals from solid organic waste: an ecotechnological approach toward v ... -- 1. Introduction -- 2. Sources of heavy metals in organic waste -- 2.1 Agricultural sources -- 2.1.1 Fertilizer -- 2.1.2 Pesticides -- 2.2 Biosolids -- 2.3 Industrial sources -- 3. Different methods applied for heavy metal removal from solid organic waste: a review of phytoremediation -- 3.1 Phytoextraction -- 3.2 Phytostabilization/phytoimmobilization -- 3.3 Phytovolatilization -- 3.4 Phytodegradation -- 3.5 Rhizodegradation -- 4. Role of vermitechnology in reduction of heavy metal load: a case study using paper mill wastes -- 5. Role of microbes in remediation of heavy metals -- 6. Mechanisms involved in combating heavy metal stress in earthworms -- 7. Conclusion -- References -- Further reading -- 9 - Vermicomposting as a tool for removal of heavy metal contaminants from soil and water environment -- 1. Introduction -- 2. Vermicomposting process and raw materials used. , 2.1 Composting -- 2.2 Harvesting of the product -- 3. Importance of vermicomposting -- 4. Vermicomposting for removal of metal ions from- -- 4.1 Detoxification of industrial wastes/sludges using earthworms -- 4.2 Removal of metals by vermicomposting from municipal solid waste -- 4.3 Vermicomposting to remove metal ions from polluted soil -- 4.4 Vermicomposting for wastewater sludge treatment -- 5. Vermicomposting for breaking down of heavy metal in organic pollutants -- 5.1 Immobilization -- 5.2 Reduction -- 5.3 Volatilization -- 5.4 Modification of the rhizosphere -- 6. Safe disposal of metal-enriched compost -- 6.1 Vermiaccumulation -- 6.2 Vermitransformation -- 6.3 Vermidegradation -- 7. Strategies for improving vermiremediation -- 8. Precaution to be taken during vermiremediation -- 9. Conclusions -- References -- 10 - Earthworms and microplastics: Transport from sewage sludge to soil, antibiotic-resistant genes, and soil remed ... -- 1. Introduction -- 1.1 Microplastics in sewage sludge and soil -- 1.2 Presence of antibiotic resistance genes in soil -- 1.3 Earthworms as targets of exposure to contamination and as tools for soil remediation -- 2. Microplastics and antibiotic resistance genes -- 2.1 Co-transport from sewage sludge to and within the soil -- 2.2 Effects on soil systems -- 2.2.1 Effects on earthworms and other soil invertebrates -- 2.2.2 Effects on plants -- 2.2.3 Effects on the soil microbiome -- 3. Impact of earthworms on microplastics and antibiotic resistance -- 3.1 Earthworm-mediated microplastic degradation -- 3.2 Impact of vermicomposting on antibiotic resistance genes -- 4. Discussion -- 5. Conclusions and perspectives -- Acknowledgments -- References -- 11 - Instrumental characterization of matured vermicompost produced from organic waste -- 1. Introduction -- 2. Characteristic of mature vermicompost: a brief overview. , 3. Traditional methods for understanding vermicompost maturity.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...