GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Berlin/Boston :Walter de Gruyter GmbH,
    Keywords: Microalgae--Biotechnology. ; Biomass energy. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (288 pages)
    Edition: 1st ed.
    ISBN: 9783110225020
    Language: English
    Note: Intro -- Preface -- 1 Introduction - Discovering Microalgae as Source for Sustainable Biomass -- 1.1 All life eminates from the sun! All life originates from the sea! -- 1.2 Sustainable microalgal biomass of the third generation -- 1.2.1 Microalgae produce 5 times more biomass per hectare than terrestrial crops -- 1.2.2 Microalgae can be cultivated in arid areas which are not suitable for agriculture -- 1.2.3 Microalgae exhibit high lipid contents over 50% and high titers of other products -- 1.3 The technical challenge -- 1.3.1 Microalgae can use CO2 and sunlight -- 1.3.2 Microalgae can deliver cheap sustainable biomass for bulk chemicals and biofuels -- 1.3.3 Microalgae can be produced nearly everywhere -- 1.3.4 Microalgae do not need pesticides and only little fertilizers -- 1.3.5 Closed photobioreactors as tools of choice -- The biological potential of microalgae -- 2 Phylogeny and systematics of microalgae: An overview -- 2.1 Introduction -- 2.2 Diversity and evolution of microalgae -- 2.2.1 Algal diversity -- 2.2.2 Algal evolution -- 2.3 Cyanobacteria: The prokaryotic algae -- 2.4 Plantae or Archaeplastida supergroup: Green algae, red algae and glaucophytes -- 2.4.1 Viridiplantae: The green algae distributed over two phyla -- 2.4.2 Rhodophyta: Red algae -- 2.4.3 Glaucophytes -- 2.5 Chromalveolate algae: The photosynthetic Stramenopiles (heterokont algae) -- 2.5.1 Diatoms (Bacillariophyta -- photosynthetic Stramenopiles) -- 2.5.2 Eustigmatophyceae and Xanthophyceae (photosynthetic Stramenopiles) -- 2.5.3 Other photosynthetic Stramenopiles -- 2.5.3.1 Raphidophyceae -- 2.5.3.2 Synurophyceae and Chrysophyceae -- 2.5.3.3 Phaeophyceae -- 2.6 Chromalveolate algae: coccolithophorids and haptophyte algae -- 2.7 Chromalveolate algae: Dinoflagellates (Dinophyta) -- 2.8 Euglenoids (Excavata supergroup) -- Acknowledgements -- References. , 3 Balancing the conversion efficiency from photon to biomass -- 3.1 Introduction -- 3.2 Definition of important terms -- 3.2.1 Photosynthetic efficiency -- 3.2.2 Growth efficiency (photon to biomass efficiency) -- 3.3 Physiological dynamics of processes which control biological energy conversion efficiency -- 3.3.1 Absorption -- 3.3.2 Regulation and efficiency of photochemistry -- 3.3.3 Regulation of electron flow -- 3.3.4 Regulation of carbon allocation -- 3.4 Conclusions for microalgal biotechnology -- References -- 4 Algae symbiosis with eukaryotic partners -- 4.1 Introduction to algae-specific symbiosis -- 4.1.1 Importance of algae symbiotic relationships -- 4.1.2 Modes of algae symbiosis with eukaryotes -- 4.2 Aquatic systems -- 4.2.1 Algae symbiosis with Cnidaria -- 4.2.1.1 Symbiont uptake and management -- 4.2.1.2 Flux of primary metabolites in host and symbiont -- 4.2.1.3 Optimizing photosynthesis for efficient metabolite exchange -- 4.2.1.4 Symbiont-derived secondary metabolites -- 4.2.1.5 Effects of environmental stress on symbiosis -- 4.2.2 Algae symbiosis with Porifera -- 4.2.2.1 Morphology of sponge-algae associations -- 4.2.2.2 Symbiont uptake, specificity and transmission -- 4.2.2.3 Flux of primary metabolites in host and symbiont -- 4.2.2.4 Symbiont-derived secondary metabolites -- 4.2.2.5 Effects of environmental stress on symbiosis -- 4.2.3 Algae symbiosis with Mollusca -- 4.2.3.1 Morphology of mollusc-algae associations -- 4.2.3.2 Symbiont uptake and maintenance -- 4.2.3.3 Flux of primary metabolites in host and symbiont -- 4.3 Terrestrial system -- 4.3.1 Lichens: Ecological pioneers -- 4.3.2 Modes of lichen symbiosis -- 4.3.3 Lichen taxonomy and evolution -- 4.3.4 Lichen morphology -- 4.3.5 Symbiotic interactions -- 4.3.6 Lichen growth and propagation -- 4.3.6.1 Lichen propagation -- 4.3.7 Symbiotic benefits for algal photobionts. , 4.3.8 Biotechnological aspects of lichen/mycobiont cultivation -- 4.3.9 Potential of bioactive lichen-derived metabolites -- References -- 5 Genetic engineering, methods and targets -- 5.1 Introduction -- 5.2 Methods in genetic engineering of eukaryotic microalgae -- 5.2.1 Transformation -- 5.2.1.1 Glass beads and silicon whiskers -- 5.2.1.2 Particle bombardment -- 5.2.1.3 Electroporation -- 5.2.1.4 Agrobacterium tumefaciens-mediated transformation -- 5.2.2 Promoters -- 5.2.3 Gene silencing -- 5.2.4 Codon usage -- 5.2.5 Improvement of expression rates and secretion of proteins -- 5.2.6 Selection markers -- 5.2.7 Reporter genes -- 5.3 Examples for biotechnological relevant proteins -- 5.3.1 Proteins expressed in Chlamydomonas reinhardtii -- 5.3.2 Recombinant proteins in other microalgae -- 5.4 Future prospects/outlook -- 5.4.1 Methods for genetic engineering -- 5.4.2 Products from genetically modified microalgae -- Acknowledgements -- References -- 6 Algenics: Providing microalgal technologies for biological drugs -- 6.1 Background and inception of the company -- 6.2 Development and optimization of proprietary technologies -- 6.3 From proofs of concept to therapeutic product candidates -- References -- Technical Means for Algae Production -- 7 Raceways-based production of algal crude oil -- 7.1 Introduction -- 7.2 Raceways -- 7.2.1 General configuration -- 7.2.2 Flow in a raceway -- 7.2.3 Power consumption for mixing -- 7.2.4 Paddlewheel design -- 7.2.5 Location -- 7.2.6 Evaporation from raceways -- 7.2.7 Temperature variations -- 7.2.8 Culture pH and carbon dioxide demand -- 7.2.9 Oxygen removal -- 7.2.10 Potential for contamination -- 7.2.11 Irradiance variation with depth -- 7.2.12 Local and average values of specific growth rate -- 7.2.13 Raceway capital cost -- 7.3 Algal crude oil as replacement petroleum -- 7.4 Algae biomass production. , 7.4.1 Productivity of biomass and oil -- 7.4.2 Limits to algal biomass productivity -- 7.4.2.1 Photosynthetic efficiency -- 7.4.2.2 Why are microalgae more efficient than terrestrial plants? -- 7.5 Economics of algal crude oil -- 7.5.1 Residual biomass -- 7.6 Concluding remarks -- 7.7 Nomenclature -- References -- 8 Cellana LLC: Algae-based products for a sustainable future -- 8.1 Introduction -- 8.2 Cellana technology and demonstration facility -- 8.3 Biorefinery approach -- 8.4 Prospects -- References -- 9 Principles of photobioreactor design -- 9.1 Introduction -- 9.2 Major factors governing the production of microalgae -- 9.3 Open systems -- 9.3.1 Open raceways -- 9.3.1.1 Technical issues -- 9.3.1.2 Scale-up -- 9.3.1.3 Drawbacks -- 9.4 Enclosed photobioreactors -- 9.4.1 Flat-panel photobioreactors -- 9.4.1.1 Technical issues -- 9.4.1.2 Scale-up -- 9.4.1.3 Drawbacks -- 9.4.2 Tubular photobioreactors -- 9.4.2.1 Technical issues -- 9.4.2.2 Scale-up -- 9.5 Summary of major characteristics of large-scale algal cultures systems -- Acknowledgements -- References -- 10 Knowledge models for the engineering and optimization of photobioreactors -- 10.1 Introduction -- 10.2 Theoretical background for radiation measurement and handling -- 10.2.1 Main physical variables -- 10.2.2 Solar illumination -- 10.3 Modeling light-limited photosynthetic growth in photobioreactors -- 10.3.1 Overview of the modeling approach -- 10.3.2 Mass balances -- 10.3.3 Stoichiometry of photosynthetic growth -- 10.3.3.1 Simple stoichiometric equations -- 10.3.3.2 Structured stoichiometric equations -- 10.3.4 Kinetic modeling of photosynthetic growth -- 10.3.5 Energetics of photobioreactors -- 10.3.6 Radiative transfer modeling -- 10.3.6.1 Radiative transfer equation -- 10.3.6.2 Optical and radiative properties for micro-organisms. , 10.4 Illustrations of the utility of modeling for the understanding and optimization of cultivation systems -- 10.4.1 Understanding the role of light-attenuation conditions -- 10.4.1.1 Illuminated fraction y -- 10.4.1.2 Achieving maximal productivities with appropriate definition of light-attenuation conditions -- 10.4.1.3 Prediction of biomass concentration and productivity -- 10.4.1.4 Engineering formula for assessment of maximum kinetic performance in PBRs -- 10.4.2 Solar production -- 10.4.2.1 Prediction of PBR productivity as a function of radiation conditions -- 10.4.2.2 Engineering formula for maximal productivity determination -- 10.4.3 Modeling light/dark cycle effects -- 10.5 Acknowledgments -- 10.6 Nomenclature -- References -- 11 Construction and assessment parameters of photobioreactors -- 11.1 Introduction -- 11.2 Technical design features -- 11.2.1 Material issues -- 11.2.2 Geometric parameters -- 11.2.3 Hydrodynamic parameters -- 11.3 Measured performance criteria -- 11.4 Mode and stability of operation -- 11.5 Conclusion -- References -- 12 Autotrophic, industrial cultivation of photosynthetic microorganisms using flue gas as carbon source and Subitec's flat-panel-airlift (FPA) cultivation system -- 12.1 Introduction -- 12.2 Subitec GmbH and the flat-panel-airlift system -- 12.3 From laboratory to pilot scale -- References -- 13 Case study: Microalgae production in the self-supported ProviAPT vertical flat-panel photobioreactor system -- 13.1 Introduction -- 13.2 ProviAPT technology and features -- 13.3 Prospects -- References -- 14 Case study: Biomass from open ponds -- 14.1 Introduction -- 14.2 Production process -- 14.2.1 Removal of coarse solids -- 14.2.2 Concentrating the biomass -- 14.2.3 Washing the biomass -- 14.2.4 Differences to closed photo-bioreactors -- 14.3 Energy consumption -- 14.4 Survey of process relevant data. , References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...