GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biological pump  (3)
  • Climate variability  (3)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 21 (2007): GB2001, doi:10.1029/2006GB002762.
    Description: Recent upward revisions in key sink/source terms for fixed nitrogen (N) in the oceans imply a short residence time and strong negative feedbacks involving denitrification and N fixation to prevent large swings in the ocean N inventory over timescales of a few centuries. We tested the strength of these feedbacks in a global biogeochemical elemental cycling (BEC) ocean model that includes water column denitrification and an explicit N fixing phytoplankton group. In the northern Indian Ocean and over longer timescales in the tropical Atlantic, we find strong stabilizing feedbacks that minimize changes in marine N inventory over timescales of ∼30–200 years. In these regions high atmospheric dust/iron inputs lead to phosphorus limitation of diazotrophs, and thus a tight link between N fixation and surface water N/P ratios. Maintenance of the oxygen minimum zones in these basins depends on N fixation driven export. The stabilizing feedbacks in other regions are significant but weaker owing to iron limitation of the diazotrophs. Thus Fe limitation appears to restrict the ability of N fixation to compensate for changes in denitrification in the current climate, perhaps leading the oceans to lose fixed N. We suggest that iron is the ultimate limiting nutrient leading to nitrogen being the proximate limiting nutrient over wide regions today. Iron stress was at least partially alleviated during more dusty, glacial times, leading to a higher marine N inventory, increased export production, and perhaps widespread phosphorus limitation of the phytoplankton community. The increased efficiency of the biological pump would have contributed to the glacial drawdown in atmospheric CO2.
    Description: This work was supported by grants from the U.S. National Science Foundation (OCE-0222033 and OCE-0452972). Computations supported by Earth System Modeling Facility (NSF ATM-0321380) and by the Climate Simulation Laboratory at the National Center for Atmospheric Research.
    Keywords: Climate ; Biological pump ; Ecosystem model
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/postscript
    Format: text/plain
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Global Biogeochemical Cycles 28 (2014): 1295–1310, doi:10.1002/2014GB004890.
    Description: The response of the carbon cycle in prognostic Earth system models (ESMs) contributes significant uncertainty to projections of global climate change. Quantifying contributions of known drivers of interannual variability in the growth rate of atmospheric carbon dioxide (CO2) is important for improving the representation of terrestrial ecosystem processes in these ESMs. Several recent studies have identified the temperature dependence of tropical net ecosystem exchange (NEE) as a primary driver of this variability by analyzing a single, globally averaged time series of CO2 anomalies. Here we examined how the temporal evolution of CO2 in different latitude bands may be used to separate contributions from temperature stress, drought stress, and fire emissions to CO2 variability. We developed atmospheric CO2 patterns from each of these mechanisms during 1997–2011 using an atmospheric transport model. NEE responses to temperature, NEE responses to drought, and fire emissions all contributed significantly to CO2 variability in each latitude band, suggesting that no single mechanism was the dominant driver. We found that the sum of drought and fire contributions to CO2 variability exceeded direct NEE responses to temperature in both the Northern and Southern Hemispheres. Additional sensitivity tests revealed that these contributions are masked by temporal and spatial smoothing of CO2 observations. Accounting for fires, the sensitivity of tropical NEE to temperature stress decreased by 25% to 2.9 ± 0.4 Pg C yr−1 K−1. These results underscore the need for accurate attribution of the drivers of CO2 variability prior to using contemporary observations to constrain long-term ESM responses.
    Description: This work was supported by the Department of Energy Office of Science Biological and Environmental Research Division, the National Science Foundation Decadal and Regional Climate Prediction using Earth System Models (EaSM) program (NSF AGS 1048890 and AGS 1048827), and NASA Carbon Cycle Science (NASA NNX11AF96G). G.K.A. acknowledges a NOAA Climate and Global Change postdoctoral fellowship. J.B.M. and E.J.D. thank NOAA's Climate Program Office's Atmospheric Chemistry, Carbon Cycle, and Climate (AC4) program for support
    Keywords: Carbon cycle ; Climate variability ; Drought ; Fire ; Terrestrial ecosystems ; Atmospheric CO2
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 121 (2016): 2369–2389, doi:10.1002/2015JG003311.
    Description: We analyzed 20 years (1993–2013) of observations of dissolved inorganic macronutrients (nitrate, N; phosphate, P; and silicate, Si) and chlorophyll a (Chl) at Palmer Station, Antarctica (64.8°S, 64.1°W) to elucidate how large-scale climate and local physical forcing affect the interannual variability in the seasonal phytoplankton bloom and associated drawdown of nutrients. The leading modes of nutrients (N, P, and Si empirical orthogonal functions 1, EOF1) represent overall negative anomalies throughout growing seasons, showing a mixed signal of variability in the initial levels and drawdown thereafter (low-frequency dynamics). The second most common seasonal patterns of nitrate and phosphate (N and P EOF2) capture prolonged drawdown events during December–March, which are correlated to Chl EOF1. Si EOF2 captures a drawdown event during November–December, which is correlated to Chl EOF2. These different drawdown patterns are shaped by different sets of physical and climate forcing mechanisms. N and P drawdown events during December–March are influenced by the winter and spring Southern Annular Mode (SAM) phase, where nutrient utilization is enhanced in a stabilized upper water column as a consequence of SAM-driven winter sea ice and spring wind dynamics. Si drawdown during November–December is influenced by early sea ice retreat, where ice breakup may induce abrupt water column stratification and a subsequent diatom bloom or release of diatom cells from within the sea ice. Our findings underscore that seasonal nutrient dynamics in the coastal WAP are coupled to large-scale climate forcing and related physics, understanding of which may enable improved projections of biogeochemical responses to climate change.
    Description: U.S. National Science Foundation Grant Numbers: OPP-9011927, 9632763, 0217282, 0823101, GEO-PLR 1440435; NASA ROSES Grant Number: NNX14AL86G
    Description: 2017-03-17
    Keywords: Nutrient drawdown ; Phytoplankton bloom ; Climate variability ; Western Antarctic Peninsula ; Palmer LTER ; Biogeochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 115 (2010): C03024, doi:10.1029/2009JC005267.
    Description: The Southern Ocean is a climatically sensitive region that plays an important role in the regional and global modulation of atmospheric CO2. Based on satellite-derived sea ice data, wind and cloudiness estimates from numerical models (National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis), and in situ measurements of surface (0–20 m depth) chlorophyll a (ChlSurf) and dissolved inorganic carbon (DICSurf) concentration, we show sea ice concentration from June to November and spring wind patterns between 1979 and 2006 had a significant influence on midsummer (January) primary productivity and carbonate chemistry for the Western Shelf of the Antarctic Peninsula (WAP, 64°–68°S, 63.4°–73.3°W). In general, strong (〉3.5 m s−1) and persistent (〉2 months) northerly winds during the previous spring were associated with relatively high (monthly mean 〉 2 mg m−3) ChlSurf and low (monthly mean 〈 2 mmol kg−1) salinity-corrected DIC (DICSurf*) during midsummer. The greater ChlSurf accumulation and DICSurf* depletion was attributed to an earlier growing season characterized by decreased spring sea ice cover or nearshore accumulation of phytoplankton in association with sea ice. The impact of these wind-driven mechanisms on ChlSurf and DICSurf* depended on the extent of sea ice area (SIA) during winter. Winter SIA affected phytoplankton blooms by changing the upper mixed layer depth (UMLD) during the subsequent spring and summer (December–January–February). Midsummer DICSurf* was not related to DICSurf* concentration during the previous summer, suggesting an annual replenishment of surface DIC during fall/winter and a relatively stable pool of deep (〉200 m depth) “winter-like” DIC on the WAP.
    Description: This research was supported by NSF OPP grants 0217282 to HWD at the Virginia Institute of Marine Science and 0823101 to HWD at the MBL.
    Keywords: Climate variability ; Antarctica ; Carbonate system
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 28 (2014): 181-196, doi:10.1002/2013GB004743.
    Description: The export of organic carbon from the surface ocean by sinking particles is an important, yet highly uncertain, component of the global carbon cycle. Here we introduce a mechanistic assessment of the global ocean carbon export using satellite observations, including determinations of net primary production and the slope of the particle size spectrum, to drive a food-web model that estimates the production of sinking zooplankton feces and algal aggregates comprising the sinking particle flux at the base of the euphotic zone. The synthesis of observations and models reveals fundamentally different and ecologically consistent regional-scale patterns in export and export efficiency not found in previous global carbon export assessments. The model reproduces regional-scale particle export field observations and predicts a climatological mean global carbon export from the euphotic zone of ~6 Pg C yr−1. Global export estimates show small variation (typically 〈 10%) to factor of 2 changes in model parameter values. The model is also robust to the choices of the satellite data products used and enables interannual changes to be quantified. The present synthesis of observations and models provides a path for quantifying the ocean's biological pump.
    Description: D.A.S. and K.O.B. acknowledge support from the National Aeronautics and Space Administration (NNX11AF63G). S.C.D. and S.F.S. acknowledge support from the National Science Foundation through the Center for Microbial Oceanography: Research and Education (C-MORE) (NSF EF-0424599).
    Description: 2014-09-10
    Keywords: Carbon cycle ; Biological pump ; Carbon export ; Remote sensing ; Food webs
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Marine Science 3 (2016): 22, doi:10.3389/fmars.2016.00022.
    Description: Ocean ecosystems play a critical role in the Earth's carbon cycle and the quantification of their impacts for both present conditions and for predictions into the future remains one of the greatest challenges in oceanography. The goal of the EXport Processes in the Ocean from Remote Sensing (EXPORTS) Science Plan is to develop a predictive understanding of the export and fate of global ocean net primary production (NPP) and its implications for present and future climates. The achievement of this goal requires a quantification of the mechanisms that control the export of carbon from the euphotic zone as well as its fate in the underlying “twilight zone” where some fraction of exported carbon will be sequestered in the ocean's interior on time scales of months to millennia. Here we present a measurement/synthesis/modeling framework aimed at quantifying the fates of upper ocean NPP and its impacts on the global carbon cycle based upon the EXPORTS Science Plan. The proposed approach will diagnose relationships among the ecological, biogeochemical, and physical oceanographic processes that control carbon cycling across a range of ecosystem and carbon cycling states leading to advances in satellite diagnostic and numerical prognostic models. To collect these data, a combination of ship and robotic field sampling, satellite remote sensing, and numerical modeling is proposed which enables the sampling of the many pathways of NPP export and fates. This coordinated, process-oriented approach has the potential to foster new insights on ocean carbon cycling that maximizes its societal relevance through the achievement of research goals of many international research agencies and will be a key step toward our understanding of the Earth as an integrated system.
    Description: The development of the EXPORTS Science Plan was supported by NASA Ocean Biology and Biogeochemistry program (award NNX13AC35G).
    Keywords: Satellite remote sensing ; Field campain ; Science plan ; Ocean carbon cycling ; Biological pump
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...