GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 1160–1181, doi:10.1175/2011JPO4547.1.
    Description: Tropical instability waves are triggered by instabilities of the equatorial current systems, and their sea level signal, with peak amplitude near 5°N, is one of the most prominent features of the dynamic topography of the tropics. Cross-spectral analysis of satellite altimetry observations shows that there is sea level variability in the Pacific Ocean as far north as Hawaii (i.e., 20°N) that is coherent with the sea level variability near 5°N associated with tropical instability waves. Within the uncertainty of the analysis, this off-equatorial variability obeys the dispersion relation for nondivergent, barotropic Rossby waves over a fairly broad range of periods (26–38 days) and zonal wavelengths (9°–23° of longitude) that are associated with tropical instability waves. The dispersion relation and observed wave properties further suggest that the waves are carrying energy away from the instabilities toward the North Pacific subtropical gyre, which, together with the observed coherence of the sea level signal of the barotropic waves with that of the tropical instability waves, suggests that the barotropic Rossby waves are being radiated from the tropical instability waves. The poleward transport of kinetic energy and westward momentum by these barotropic Rossby waves may influence the circulation in the subtropics.
    Description: Funding for this research came from WHOI’s TropicalResearch Initiative, the Charles D. Hollister Fund for Assistant Scientist Support, the John E. and Anne W. Sawyer Endowed Fund in Special Support of Scientific Staff, and Grant OCE-0845150 from the National Science Foundation.
    Keywords: Barotropic flows ; Rossby waves ; Tropics ; Pacific Ocean ; Instability ; Waves, atmospheric
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of [publisher] for personal use, not for redistribution. The definitive version was published in Farrar, J. T., Durland, T., Jayne, S. R., & Price, J. F. Long-distance radiation of Rossby Waves from the equatorial current system. Journal of Physical Oceanography, 51(6), (2021): 1947–1966, https://doi.org/10.1175/JPO-D-20-0048.1.
    Description: Measurements from satellite altimetry are used to show that sea surface height (SSH) variability throughout much of the North Pacific Ocean is coherent with the SSH signal of the tropical instability waves (TIWs) that result from instabilities of the equatorial currents. This variability has regular phase patterns consistent with freely propagating barotropic Rossby waves radiating energy away from the unstable equatorial currents, and the waves clearly propagate from the equatorial region to at least 30°N. The pattern of SSH variance at TIW frequencies exhibits remarkable patchiness on scales of hundreds of kilometers, which we interpret as being due to the combined effects of wave reflection, refraction, and interference. North of 40°N, more than 6000 km from the unstable equatorial currents, the SSH field remains coherent with the near-equatorial SSH variability, but it is not as clear whether the variability at the higher latitudes is a simple result of barotropic wave radiation from the tropical instability waves. Even more distant regions, as far north as the Aleutian Islands off of Alaska and the Kamchatka Peninsula of eastern Russia, have SSH variability that is significantly coherent with the near-equatorial instabilities. The variability is not well represented in the widely used gridded SSH data product commonly referred to as the AVISO or DUACS product, and this appears to be a result of spatial variations in the filtering properties of the objective mapping scheme.
    Description: This work was supported by NASA Grants NNX13AE46G, NNX14AM71G, and NNX17AH54G.
    Keywords: Pacific Ocean ; Barotropic flows ; Instability ; Planetary waves ; Rossby waves ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kantha, L., Weller, R. A., Farrar, J. T., Rahaman, H., & Jampana, V. A note on modeling mixing in the upper layers of the Bay of Bengal: importance of water type, water column structure and precipitation. Deep-Sea Research Part II-Topical Studies in Oceanography, 168, (2019): 104643. doi: 10.1016/j.dsr2.2019.104643.
    Description: Turbulent mixing in the upper layers of the northern Bay of Bengal is affected by a shallow layer overlying the saline waters of the Bay, which results from the huge influx of freshwater from major rivers draining the Indian subcontinent and from rainfall over the Bay during the summer monsoon. The resulting halocline inhibits wind-driven mixing in the upper layers. The brackish layer also alters the optical properties of the water column. Air-sea interaction in the Bay is expected to play a significant role in the intraseasonal variability of summer monsoons over the Indian subcontinent, and as such the sea surface temperature (SST) changes during the summer monsoon are of considerable scientific and societal importance. In this study, data from the heavily instrumented Woods Hole Oceanographic Institution (WHOI) mooring, deployed at 18oN, 89.5oE in the northern Bay from December 2014 to January 2016, are used to drive a one-dimensional mixing model, based on second moment closure model of turbulence, to explore the intra-annual variability in the upper layers. The model results highlight the importance of the optical properties of the upper layers (and hence the penetration of solar insolation in the water column), as well as the temperature and salinity in the upper layers prescribed at the start of the model simulation, in determining the SST in the Bay during the summer monsoon. The heavy rainfall during the summer monsoon also plays an important role. The interseasonal and intraseasonal variability in the upper layers of the Bay are contrasted with those in the Arabian Sea, by the use of the same model but driven by data from an earlier deployment of a WHOI mooring in the Arabian Sea at 15.5 oN, 61.5 oE from December 1994 to December 1995.
    Description: LK was supported by U.S. Office of Naval Research (ONR) MISO/BoB DRI under grant number N00014-17-1-2716. RW and JTF were supported by ONR Grants N00014-13-1-0453 and N00014-17-1-2880, and the WHOI mooring was funded by Grant N00014-13-1-0453. RW was supported by ONR for the 1994–1995 deployment of the surface mooring in the Arabian Sea. HR and VJ wish to thank Dr. SSC Shenoi, the Director of INCOIS and Dr. M Ravichandran, Director, NCPOR for the encouragement and support to carry out this study. This work was supported by the Ministry of Earth Sciences (MoES), Govt. of India. This is also INCOIS Contribution number 349.
    Keywords: Bay of Bengal ; Arabian sea ; Mixing in the upper layers ; Second moment closure ; Turbulence ; WHOI mooring ; OMNI mooring ; Water type ; Solar insolation ; Precipitation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters, 46(8), (2019):4346-4355, doi:10.1029/2018GL081577.
    Description: A yearlong record from moored current, temperature, conductivity, and four mixing meters (χpods) in the northernmost international waters of the Bay of Bengal quantifies upper‐ocean turbulent diffusivity of heat (Kt) and its response to the Indian monsoon. Data indicate (1) pronounced intermittency in turbulence at semidiurnal, diurnal, and near‐inertial timescales, (2) strong turbulence above 25‐m depth during the SW (summer) and NE (winter) monsoon relative to the transition periods (compare Kt 〉 10−4 m2/s to Kt  ∼ 10−5 m2/s, and (3) persistent suppression of turbulence (Kt 〈 10−5 m2/s) for 3 to 5 months in the latter half of the SW monsoon coincident with enhanced near‐surface stratification postarrival of low‐salinity water from the Brahmaputra‐Ganga‐Meghna delta and monsoonal precipitation. This suppression promotes maintenance of the low‐salinity surface waters within the interior of the bay preconditioning the upper northern Indian Ocean for the next year's monsoon.
    Description: This work was supported by the U.S. Office of Naval Research (ONR) Grants N00014‐14‐1‐0236 and N00014‐17‐1‐2472, and the Ocean Mixing and Monsoon program of the Indian Ministry of Earth Sciences. The deployment of the Woods Hole Oceanographic Institution mooring and RW and JTF were supported by ONR Grant N00014‐13‐1‐0453. The deployment and recovery of the mooring were carried out by RV Sagar Nidhi and RV Sagar Kanya, respectively, with the help of the crew and science parties. Thanks to National Institute of Ocean Technology (India) for buoy support. The authors acknowledge invaluable discussions with Johannes Becherer, Deepak Cherian, and Sally Warner at CEOAS, OSU, and Dipanjan Chaudhuri, J Sree Lekha, and Debasis Sengupta at CAOS, IISc. The authors thank two anonymous reviewers for their detailed reviews, which have helped sharpen many aspects of this paper. Data can be accessed as described in section S2.
    Description: 2019-10-08
    Keywords: Ocean turbulence ; Turbulence suppression ; Indian Monsoon ; Bay of Bengal ; Turbulent Mixing ; Chipod
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...