GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1912
    Keywords: GABAA receptor-ionophore complex ; Dissociation of [35S]TBPS binding ; Barbiturate stereoisomers ; Arrhenius analysis ; Thermodynamics of barbiturate binding ; Electrophysiology of GABAA-ionophores
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The temperature dependence of [35S]-t- butylbicyclophosphorothionate (TBPS) binding to the convulsant sites of the GABAA receptor complex was studied in membrane preparations of rat forebrain. Although specific [35S]TBPS binding was maximal around 20° C, the rate constants of dissociation decreased monotonously between 37°C and 2° C. The displacing potencies of the convulsant S(+) enantiomer of 1-methyl-5-phenyl-5-propyl-barbituric acid (MPPB) (IC50 = 1250 ± 30 μM) and the depressant R(−) MPPB (IC5O = 310 ± 5 μM) did not show significant changes between 19° C and 37° C. Therefore barbiturate binding seems to be driven by entropic, rather than enthalpic changes. An excess of MPPB enantiomers elicited accelerated and polyphasic dissociations of [35S]TBPS as compared to the monophasic dissociation by TBPS. Arrhenius analysis was applied to the measurable initial rate constants of dissociation. Arrhenius plots were linear between 2° C and 37° C. Activation parameters were similar when [35S] TBPS dissociation was triggered by the convulsants TBPS and S(+) MPPB. It can be attributed to similar conformations of the closed ionophore complex. In contrast, the depressant R(−) MPPB strongly decreased the activation energy of TBPS dissociation from the open ionophore ternary complex. In whole-cell patch-clamp experiments R(−) MPPB, but not S(+) MPPB, elicited chloride currents in rat primary cortical cultures with an EC50 value of 560 ± 30 μM and a Hill coefficient of 2.9 ± 0.2. These currents were similar to those elicited by GABA and blocked by TBPS. A kinetic scheme is proposed for the dissociation of TBPS and to explain the different effects of MPPB enantiomers. Submillimolar R(−) MPPB is supposed to bind to (about three) barbiturate sites on GABAA-ionophores and to open them in a cooperative manner to result in a decreased activation energy for accelerated displacement of convulsant binding.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...