GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Bacteriochlorophyll-protein complex  (1)
  • freeze fracture  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 19 (1988), S. 39-61 
    ISSN: 1573-5079
    Keywords: Bacteriochlorophyll-protein complex ; gene expression ; light-harvesting complex ; reaction center ; Rhodospirillaceae ; transcriptional control ; translational control
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The puf operon of the purple nonsulfur photosynthetic bacterium, Rhodobacter sphaeroides, contains structural gene information for at least two functionally distinct bacteriochlorophyll-protein complexes (light harvesting and reaction center) which are present in a fixed ratio within the photosynthetic intracytoplasmic membrane. Two proximal genes (pufBA) specify subunits of a long wavelength absorbing (i.e., 875 nm) light harvesting complex which are present in the photosynthetic membrane in ≃15 fold excess relative to the reaction center subunits which are encoded by the pufLM genes. This review summarizes recent studies aimed at determining how expression of the R. sphaeroides puf operon region relates to the ratio of individual bacteriochlorophyll-protein complexes found within the photosynthetic membrane. These experiments indicate that puf operon expression may be regulated at the transcriptional, post-transcriptional, translation and post-translational levels. In addition, this review discusses the possible role(s) of newly identified loci upstream of pufB which may be involved in regulating either synthesis or assembly of individual bacteriochrlorophyll-protein complexes as well as the pufX gene, the most distal genetic element within the puf operon whose function is still unknown.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 22 (1983), S. 15-29 
    ISSN: 0730-2312
    Keywords: Rhodopseudomonas sphaeroides ; photosynthetic membrane synthesis ; cell cycle ; freeze fracture ; macromolecule distribution ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The steady-state biosynthesis of the photosynthetic membrane (ICM) of Rhodopseudomonas sphaeroides has been reviewed. At moderate light intensities, 500 ft-c, preexisting ICM serves as the insertion matrix for newly synthesized membrane components. Whereas the bulk of the membrane protein, protein-pigment complexes, and pigments are inserted into preexisting ICM throughout the cell cycle, phospholipid is transferred from outside the ICM to the ICM only at the time of cell division. Because the site of cellular phospholipid synthesis is the cytoplasmic membrane, these results infer that despite the physical continuity of cytoplasmic membrane and ICM, there must exist between these membranous domains a “barrier” to the free diffusion of cellular phospholipid. The cyclical alternation in protein to phospholipid ratio of the ICM infers major structural and functional alternations, such as changes in the protein to lipid ratio of the membrane, specific density of the membrane, lipid structure within the membrane, and the rate of cyclic electron flow. When biochemical studies are correlated with detailed electron microscopic investigations we can further conclude that the number of photosynthetic units within the plane of the membrane can vary by nearly a factor of two over the course of the cell cycle. The average physical size of the photosynthetic units is constant for a given light intensity but inversely proportional to light intensity. The distribution of photosynthetic unit size classes within the membrane can be interpreted as suggesting that the “core” of the photosynthetic unit (reaction center plus fixed antenna complex) is inserted into the membrane coordinately as a structural entity. The variable antenna complex is, on the other hand, inserted independent of the “core” and randomly associates with both old and new core complexes. Finally, we conclude that there is substantial substructure to the distribution of photosynthetic units within the ICM, ie, they are highly ordered and exist in a defined spatial orientation to one another.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...