GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Marine Systems 98-99 (2012): 26-39, doi:10.1016/j.jmarsys.2012.03.003.
    Description: We present results on phytoplankton and bacterial production and related hydrographic properties collected on nine annual summer cruises along the western Antarctic Peninsula. This region is strongly influenced by interannual variations in the duration and extent of sea ice cover, necessitating a decade-scale study. Our study area transitions from a nearshore region influenced by summer runoff from glaciers to an offshore, slope region dominated by the Antarctic Circumpolar Current. The summer bacterial assemblage is the product of seasonal warming and freshening following spring sea ice retreat and the plankton succession occurring in that evolving water mass. Bacterial production rates averaged 20 mgC m-2 d-1 and were a low (5%) fraction of the primary production (PP). There was significant variation in BP between regions and years, reflecting the variability in sea ice, Chlorophyll and PP. Leucine incorporation was significantly correlated (r2 ranging 0.2-0.7, p〈0.001) with both chlorophyll and PP across depths, regions and years indicating strong phytoplankton-bacteria coupling. Relationships with temperature were variable, including positive, negative and insignificant relationships (r2 〈0.2 for regressions with p〈0.05). Bacterial production is regulated indirectly by variations in sea ice cover within regions and over years, setting the levels of phytoplankton biomass accumulation and PP rates; these in turn fuel BP, to which PP is coupled via direct release from phytoplankton or other less direct pathways.
    Description: This research was supported by NSF Grants OPP-0217282 and 0823101 from the Antarctic Organisms and Ecosystems Program to HWD.
    Keywords: Bacteria ; Antarctica ; Bacterial production ; Primary production ; Sea ice
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 7 (2016): 1731, doi: 10.3389/fmicb.2016.01731.
    Description: The marine ecosystem along the Western Antarctic Peninsula undergoes a dramatic seasonal transition every spring, from almost total darkness to almost continuous sunlight, resulting in a cascade of environmental changes, including phytoplankton blooms that support a highly productive food web. Despite having important implications for the movement of energy and materials through this ecosystem, little is known about how these changes impact bacterial succession in this region. Using 16S rRNA gene amplicon sequencing, we measured changes in free-living bacterial community composition and richness during a 9-month period that spanned winter to the end of summer. Chlorophyll a concentrations were relatively low until summer when a major phytoplankton bloom occurred, followed 3 weeks later by a high peak in bacterial production. Richness in bacterial communities varied between ~1,200 and 1,800 observed operational taxonomic units (OTUs) before the major phytoplankton bloom (out of ~43,000 sequences per sample). During peak bacterial production, OTU richness decreased to ~700 OTUs. The significant decrease in OTU richness only lasted a few weeks, after which time OTU richness increased again as bacterial production declined toward pre-bloom levels. OTU richness was negatively correlated with bacterial production and chlorophyll a concentrations. Unlike the temporal pattern in OTU richness, community composition changed from winter to spring, prior to onset of the summer phytoplankton bloom. Community composition continued to change during the phytoplankton bloom, with increased relative abundance of several taxa associated with phytoplankton blooms, particularly Polaribacter. Bacterial community composition began to revert toward pre-bloom conditions as bacterial production declined. Overall, our findings clearly demonstrate the temporal relationship between phytoplankton blooms and seasonal succession in bacterial growth and community composition. Our study highlights the importance of high-resolution time series sampling, especially during the relatively under-sampled Antarctic winter and spring, which enabled us to discover seasonal changes in bacterial community composition that preceded the summertime phytoplankton bloom.
    Description: CL was partially funded by the Graduate School and the Department of Ecology and Evolutionary Biology at Brown University and the Brown University-Marine Biological Laboratory Joint Graduate Program. This material is based upon work supported by the National Science Foundation under Grant Nos. ANT-1142114 to LA-Z, OPP-0823101 and PLR-1440435 to HD, and ANT-1141993 to JR.
    Keywords: 16S rRNA gene ; Ecological succession ; Antarctica ; Bacterial production ; Bacterial community composition ; Polaribacter ; Pelagibacter ubique (SAR11) ; Rhodobacteraceae
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Inter-Research, 2013. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Aquatic Microbial Ecology 70 (2013): 215-232, doi:10.3354/ame01655.
    Description: The significance of microzooplankton as grazers in pelagic ecosystems has been established, yet relatively few studies of microzooplankton grazing, compared to that of macrozooplankton, have been conducted in the Southern Ocean. We report phytoplankton and bacterial growth and grazing mortality rates along the Western Antarctic Peninsula (WAP), a region of rapid climate change. Growth and grazing rates were determined by dilution experiments at select stations along the WAP in January of 2009 to 2011 and in the nearshore waters near Palmer Station in February and March 2011. Microzooplankton exerted higher grazing pressure on bacteria compared to phytoplankton along the WAP and also selectively grazed on smaller phytoplankton (picoautotrophs and nanophytoplankton) and on the more actively growing (high nucleic acid) bacterial cells. Among all phytoplankton size classes, growth rates ranged from undetectable (i.e. not significant; NS) to 0.99 d-1, grazing mortality rates were NS to 0.56 d-1, and microzooplankton removed 〈100% of daily phytoplankton production in all but one experiment. For high and low nucleic acid content bacteria, growth rates were NS to 0.95 d-1, and grazing mortality rates were NS to 0.43 d-1; microzooplankton often removed 〉100% of daily bacterial production. There was a significant (albeit weak) exponential relationship between temperature and phytoplankton mortality, although the range of experimental temperatures was small. The present study provides a reference point of microzooplankton grazing impact along the WAP in the summer and contributes valuable information to studies modeling the flow of carbon through the WAP food web, improving our ability to predict climate-induced changes in the WAP ecosystem.
    Description: The Palmer LTER is supported by National Science Foundation award ANT-0823101 from the Division of Polar Programs Antarctic Organisms and Ecosystems Program. Additional funding to support the participation of L.M.G. on a Palmer LTER cruise was provided by A. G. ‘Casey’ Duplantier Jr. and the 1st Advantage Federal Credit Union of Newport News, Virginia, USA.
    Keywords: Microzooplankton ; Protozoa ; Grazing ; Western Antarctic Peninsula ; Southern Ocean ; Climate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 121 (2016): 2369–2389, doi:10.1002/2015JG003311.
    Description: We analyzed 20 years (1993–2013) of observations of dissolved inorganic macronutrients (nitrate, N; phosphate, P; and silicate, Si) and chlorophyll a (Chl) at Palmer Station, Antarctica (64.8°S, 64.1°W) to elucidate how large-scale climate and local physical forcing affect the interannual variability in the seasonal phytoplankton bloom and associated drawdown of nutrients. The leading modes of nutrients (N, P, and Si empirical orthogonal functions 1, EOF1) represent overall negative anomalies throughout growing seasons, showing a mixed signal of variability in the initial levels and drawdown thereafter (low-frequency dynamics). The second most common seasonal patterns of nitrate and phosphate (N and P EOF2) capture prolonged drawdown events during December–March, which are correlated to Chl EOF1. Si EOF2 captures a drawdown event during November–December, which is correlated to Chl EOF2. These different drawdown patterns are shaped by different sets of physical and climate forcing mechanisms. N and P drawdown events during December–March are influenced by the winter and spring Southern Annular Mode (SAM) phase, where nutrient utilization is enhanced in a stabilized upper water column as a consequence of SAM-driven winter sea ice and spring wind dynamics. Si drawdown during November–December is influenced by early sea ice retreat, where ice breakup may induce abrupt water column stratification and a subsequent diatom bloom or release of diatom cells from within the sea ice. Our findings underscore that seasonal nutrient dynamics in the coastal WAP are coupled to large-scale climate forcing and related physics, understanding of which may enable improved projections of biogeochemical responses to climate change.
    Description: U.S. National Science Foundation Grant Numbers: OPP-9011927, 9632763, 0217282, 0823101, GEO-PLR 1440435; NASA ROSES Grant Number: NNX14AL86G
    Description: 2017-03-17
    Keywords: Nutrient drawdown ; Phytoplankton bloom ; Climate variability ; Western Antarctic Peninsula ; Palmer LTER ; Biogeochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Ecology Progress Series 524 (2015): 11-26, doi:10.3354/meps11189.
    Description: The western Antarctic Peninsula is experiencing dramatic climate change as warm, wet conditions expand poleward and interact with local physics and topography, causing differential regional effects on the marine ecosystem. At local scales, deep troughs (or canyons) bisect the continental shelf and act as conduits for warm Upper Circumpolar Deep Water, with reduced seasonal sea ice coverage, and provide a reservoir of macro- and micronutrients. Shoreward of many canyon heads are Adélie penguin breeding colonies; it is hypothesized that these locations reflect improved or more predictable access to higher biological productivity overlying the canyons. To synoptically assess the potential impacts of regional bathymetry on the marine ecosystem, 4 major canyons were identified along a latitudinal gradient west of the Antarctic Peninsula using a high-resolution bathymetric database. Biological-physical dynamics above and adjacent to canyons were compared using in situ pigments and satellite-derived sea surface temperature, sea ice and ocean color variables, including chlorophyll a (chl a) and fucoxanthin derived semi-empirically from remote sensing reflectance. Canyons exhibited higher sea surface temperature and reduced sea ice coverage relative to adjacent shelf areas. In situ and satellite-derived pigment patterns indicated increased total phytoplankton and diatom biomass over the canyons (by up to 22 and 35%, respectively), as well as increases in diatom relative abundance (fucoxanthin:chl a). While regional heterogeneity is apparent, canyons appear to support a phytoplankton community that is conducive to both grazing by krill and enhanced vertical export, although it cannot compensate for decreased biomass and diatom relative abundance during low sea ice conditions.
    Description: We acknowledge support from the National Aeronautics and Space Administration Ocean Bio - logy and Biogeochemistry Program (NNX14AL86G) and the National Science Foundation Polar Programs awards 0823101 (Antarctic Organisms and Ecosystems Program) and 1440435 (Antarctic Integrated System Science) to the Palmer LTER program.
    Keywords: Western Antarctic Peninsula ; Canyons ; Phytoplankton ; Diatoms ; Remote sensing ; Adélie penguin habitat ; Sea ice
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...