GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-05-08
    Description: Histone 3 Lys27 (H3K27) trimethyltransferase Ezh2 is implicated in the pathogenesis of autoimmune inflammation. Nevertheless, the role of Ezh2 in macrophage/microglial activation remains to be defined. In this study, we identified that macrophage/microglial H3K27me3 or Ezh2, rather than functioning as a repressor, mediates toll-like receptor (TLR)-induced proinflammatory gene expression, and therefore Ezh2 depletion diminishes macrophage/microglial activation and attenuates the autoimmune inflammation in dextran sulfate sodium–induced colitis and experimental autoimmune encephalomyelitis. Mechanistic characterizations indicated that Ezh2 deficiency directly stimulates suppressor of cytokine signaling 3 (Socs3) expression and therefore enhances the Lys48-linked ubiquitination and degradation of tumor necrosis factor receptor–associated factor 6. As a consequence, TLR-induced MyD88-dependent nuclear factor B activation and the expression of proinflammatory genes in macrophages/microglia are compromised in the absence of Ezh2. The functional dependence of Ezh2 for Socs3 is further illustrated by the rescue experiments in which silencing of Socs3 restores macrophage activation and rescues autoimmune inflammation in macrophage/microglial Ezh2 -deficient mice. Together, these findings establish Ezh2 as a macrophage lineage-specific mediator of autoimmune inflammation and highlight a previously unknown mechanism of Ezh2 function.
    Keywords: Autoimmunity, Innate Immunity and Inflammation
    Print ISSN: 0022-1007
    Electronic ISSN: 1540-9538
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-08-07
    Description: The E3 ligase CRL4 DCAF2 is believed to be a pivotal regulator of the cell cycle and is required for mitotic and S phase progression. The NEDD8-targeting drug MLN4924, which inactivates cullin ring-finger ubiquitin ligases (CRLs), has been examined in clinical trials for various types of lymphoma and acute myeloid leukemia. However, the essential role of CRL4 DCAF2 in primary myeloid cells remains poorly understood. MLN4924 treatment, which mimics DCAF2 depletion, also promotes the severity of mouse psoriasis models, consistent with the effects of reduced DCAF2 expression in various autoimmune diseases. Using transcriptomic and immunological approaches, we showed that CRL4 DCAF2 in dendritic cells (DCs) regulates the proteolytic fate of NIK and negatively regulates IL-23 production. CRL4 DCAF2 promoted the polyubiquitination and subsequent degradation of NIK independent of TRAF3 degradation. DCAF2 deficiency facilitated NIK accumulation and RelB nuclear translocation. DCAF2 DC-conditional knockout mice displayed increased sensitivity to autoimmune diseases. This study shows that CRL4 DCAF2 is crucial for controlling NIK stability and highlights a unique mechanism that controls inflammatory diseases.
    Keywords: Autoimmunity, Innate Immunity and Inflammation
    Print ISSN: 0022-1007
    Electronic ISSN: 1540-9538
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...