GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Climate - Biogeochemistry Interactions in the Tropical Ocean; SFB754  (3)
  • Atlantischer Ozean Süd  (2)
  • North Atlantic  (2)
  • 1
    Keywords: Forschungsbericht ; Südwestafrika ; Atlantischer Ozean Süd ; Auftriebsgebiet ; Meeresströmung ; Klima ; Prognose
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (25 Seiten, 2,78 MB) , Illustrationen, Diagramme
    Language: German
    Note: Förderkennzeichen BMBF 03F0751A. - Verbund-Nummer 01170301 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Sprache der Zusammenfassung: Deutsch, Englisch
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Forschungsbericht ; Atlantischer Ozean Süd ; Benguelastrom ; Auftriebsgebiet
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (26 Seiten, 11,05 MB) , Illustrationen, Diagramme
    Language: German
    Note: Förderkennzeichen BMBF 03G0837A. - Verbund-Nummer 01144226 , "Autor(en): Prof. Dr. Peter Brandt, Prof. Dr. Torsten Kanzow, Prof. Dr. Martin Visbeck, Prof. Dr. Richard Greatbatch, Prof. Dr. Mojib Latif" - Berichtsblatt , Paralleltitel dem englischen Berichtsblatt entnommen , Seitenzählung beginnt mit "3" , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Mit deutscher und englischer Zusammenfassung
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-10-28
    Description: Multiyear moored velocity observations of the Angola Current near 11°S reveal a weak southward mean flow superimposed by substantial intraseasonal to seasonal variability, including annual and semiannual cycles with distinct baroclinic structures. In the equatorial Atlantic these oscillations are associated with basin-mode resonances of the fourth and second baroclinic modes, respectively. Here, the role of basin-mode resonance and local forcing for the Angola Current seasonality is investigated. A suite of linear shallow-water models for the tropical Atlantic is employed, each model representing a single baroclinic mode forced at a specific period. The annually and semiannually oscillating forcing is given by 1) an idealized zonally uniform zonal forcing restricted to the equatorial band corresponding to a remote equatorial forcing or 2) realistic, spatially varying Fourier components of wind stress data that include local forcing off Angola, particularly alongshore winds. Model-computed modal amplitudes are scaled to match moored velocity observations from the equatorial Atlantic. The observed annual cycle of alongshore velocity at 11°S is well reproduced by the remote equatorial forcing. Including local forcing slightly improves the agreement between observed and simulated semiannual oscillations at 11°S compared to the purely equatorial forcing. However, the model-computed semiannual cycle lacks amplitude at middepth. This could be the result of either underestimating the strength of the second equatorial basin mode of the fourth baroclinic mode or other processes not accounted for in the shallow-water models. Overall, the findings underline the importance of large-scale linear equatorial wave dynamics for the seasonal variability of the boundary circulation off Angola.
    Keywords: Climate - Biogeochemistry Interactions in the Tropical Ocean; SFB754
    Type: Dataset
    Format: application/zip, 6 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hahn, Johannes; Brandt, Peter; Greatbatch, Richard J; Krahmann, Gerd; Körtzinger, Arne (2014): Oxygen variance and meridional oxygen supply in the Tropical North East Atlantic oxygen minimum zone. Climate Dynamics, 43(11), 2999-3024, https://doi.org/10.1007/s00382-014-2065-0
    Publication Date: 2023-12-05
    Description: The distribution of the mean oceanic oxygen concentration results from a balance between ventilation and consumption. In the eastern tropical Pacific and Atlantic, this balance creates extended oxygen minimum zones (OMZ) at intermediate depth. Here, we analyze hydrographic and velocity data from shipboard and moored observations, which were taken along the 23°W meridian cutting through the Tropical North East Atlantic (TNEA) OMZ, to study the distribution and generation of oxygen variability. By applying the extended Osborn-Cox model, the respective role of mesoscale stirring and diapycnal mixing in producing enhanced oxygen variability, found at the southern and upper boundary of the OMZ, is quantified. From the well-ventilated equatorial region toward the OMZ core a northward eddy-driven oxygen flux is observed whose divergence corresponds to an oxygen supply of about 2.4 µmol kg-1 year-1 at the OMZ core depth. Above the OMZ core, mesoscale eddies act to redistribute low- and high-oxygen waters associated with westward and eastward currents, respectively. Here, absolute values of the local oxygen supply 〉10 mmol kg-1 year-1 are found, likely balanced by mean zonal advection. Combining our results with recent studies, a refined oxygen budget for the TNEA OMZ is derived. Eddy-driven meridional oxygen supply contributes more than 50 % of the supply required to balance the estimated oxygen consumption. The oxygen tendency in the OMZ, as given by the multidecadal oxygen decline, is maximum slightly above the OMZ core and represents a substantial imbalance of the oxygen budget reaching about 20 % of the magnitude of the eddy-driven oxygen supply.
    Keywords: Climate - Biogeochemistry Interactions in the Tropical Ocean; SFB754
    Type: Dataset
    Format: application/zip, 25 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Thomsen, Soeren; Kanzow, Torsten; Krahmann, Gerd; Greatbatch, Richard J; Dengler, Marcus; Lavik, Gaute (2016): The formation of a subsurface anticyclonic eddy in the Peru-Chile Undercurrent and its impact on the near-coastal salinity, oxygen, and nutrient distributions. Journal of Geophysical Research: Oceans, 121(1), 476-501, https://doi.org/10.1002/2015JC010878
    Publication Date: 2023-12-04
    Description: The formation of a subsurface anticyclonic eddy in the Peru-Chile Undercurrent (PCUC) in January and February 2013 is investigated using a multi-platform four-dimensional observational approach. Research vessel, multiple glider and mooring-based measurements were conducted in the Peruvian upwelling regime near 12°30'S. The dataset consists of more than 10000 glider profiles and repeated vessel-based hydrography and velocity transects. It allows a detailed description of the eddy formation and its impact on the near-coastal salinity, oxygen and nutrient distributions. In early January, a strong PCUC with maximum poleward velocities of ca. 0.25 m/s at 100 to 200 m depth was observed. Starting on January 20 a subsurface anticyclonic eddy developed in the PCUC downstream of a topographic bend, suggesting flow separation as the eddy formation mechanism. The eddy core waters exhibited oxygen concentrations less than 1mol/kg, an elevated nitrogen-deficit of ca. 17µmol/l and potential vorticity close to zero, which seemed to originate from the bottom boundary layer of the continental slope. The eddy-induced across-shelf velocities resulted in an elevated exchange of water masses between the upper continental slope and the open ocean. Small scale salinity and oxygen structures were formed by along-isopycnal stirring and indications of eddy-driven oxygen ventilation of the upper oxygen minimum zone were observed. It is concluded that mesoscale stirring of solutes and the offshore transport of eddy core properties could provide an important coastal open-ocean exchange mechanism with potentially large implications for nutrient budgets and biogeochemical cycling in the oxygen minimum zone off Peru.
    Keywords: Climate - Biogeochemistry Interactions in the Tropical Ocean; SFB754
    Type: Dataset
    Format: application/zip, 14 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 22 (2008): GB4027, doi:10.1029/2007GB003167.
    Description: Observational studies report a rapid decline of ocean CO2 uptake in the temperate North Atlantic during the last decade. We analyze these findings using ocean physical-biological numerical simulations forced with interannually varying atmospheric conditions for the period 1979–2004. In the simulations, surface ocean water mass properties and CO2 system variables exhibit substantial multiannual variability on sub-basin scales in response to wind-driven reorganization in ocean circulation and surface warming/cooling. The simulated temporal evolution of the ocean CO2 system is broadly consistent with reported observational trends and is influenced substantially by the phase of the North Atlantic Oscillation (NAO). Many of the observational estimates cover a period after 1995 of mostly negative or weakly positive NAO conditions, which are characterized in the simulations by reduced North Atlantic Current transport of subtropical waters into the eastern basin and by a decline in CO2 uptake. We suggest therefore that air-sea CO2 uptake may rebound in the eastern temperate North Atlantic during future periods of more positive NAO, similar to the patterns found in our model for the sustained positive NAO period in the early 1990s. Thus, our analysis indicates that the recent rapid shifts in CO2 flux reflect decadal perturbations superimposed on more gradual secular trends. The simulations highlight the need for long-term ocean carbon observations and modeling to fully resolve multiannual variability, which can obscure detection of the long-term changes associated with anthropogenic CO2 uptake and climate change.
    Description: S. C. Doney and I. D. Lima were supported by NASA grant NNG05GG30G.
    Keywords: North Atlantic ; CO2 uptake ; NAO
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/postscript
    Format: application/pdf
    Format: text/plain
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-10-12
    Description: A method using a linear shallow water model is presented for decomposing the temporal variability of the barotropic stream function in a high-resolution ocean model. The method is based on the vertically averaged momentum equations and is applied to the time series of annual mean stream function from the model configuration VIKING20 for the northern North Atlantic. An important result is the role played by the nonlinear advection terms in VIKING20 for driving transport. The method is illustrated by examining how the Gulf Stream transport in the recirculation region responds to the winter North Atlantic Oscillation (NAO). While no statistically significant response is found in the year overlapping with the winter NAO index, there is a tendency for the Gulf Stream transport to increase as the NAO becomes more positive. This becomes significant in lead years 1 and 2 when the mean flow advection and eddy momentum flux contributions, associated with nonlinear momentum advection, dominate. Only after 2 years, does the potential energy term, associated with the density field, start to play a role and it is only after 5 years that the transport dependence on the NAO ceases to be significant. It is also shown that the potential energy contribution to the transport stream function has significant memory of up to 5 years in the Labrador and Irminger Seas. However, it is only around the northern rim of these seas that VIKING20 and the transport reconstruction exhibit similar memory. This is due to masking by the mean flow advection and eddy momentum flux contributions.
    Keywords: 551.46 ; North Atlantic ; transport variability ; high-resolution model
    Language: English
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...