GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other types  (2)
  • Atlantic Ocean  (1)
  • sea ice dynamics  (1)
  • 1
    Publication Date: 2024-01-26
    Description: Regional freshwater content (FWC) changes are studied over the period 1961–2018 using the GECCO3 ocean synthesis. In four dynamically distinct regions of the Atlantic, the study identifies causes for FWC variability with a focus on interannual and decadal time‐scale changes. Results show that in each region, it is a combination of the surface freshwater flux and the net freshwater transport across the region's boundaries that act jointly in changing the respective FWC. Surface flux mainly contributes to the FWC variability on multi‐decadal time scales. The impact of surface flux also increases toward the tropics. On shorter time scales, it is especially horizontal transport fluctuations, leading to FWC changes in mid and high latitudes. Going from north to the south, the transport across a single meridional boundary becomes less correlated with the FWC changes but the net transport across both boundaries plays an increasingly important role. Moreover, the subpolar box is mainly gyre driven, which differs from the other two, essentially overturning driven, North Atlantic boxes. In the tropical Atlantic, the shallow overturning cell and the deep overturning contribute about equal amounts to the freshwater variations.
    Description: Plain Language Summary: Causes for freshwater content (FWC) variability in the Atlantic Ocean are analyzed for four study areas over the period 1961–2018 based on a model simulation (GECCO3 ocean synthesis). Targeting relatively long time scales, interannual, decadal to multi‐decadal FWC changes are separated into the contributions from variations of the freshwater input/output through the ocean surface and from freshwater transport (FWT) variations related to the ocean circulation changes. Surface freshwater flux is more influential on multi‐decadal time scales, and its impact increases toward the tropics. On shorter time scales, the oceanic FWT across the boundaries of the region dominates the FWC changes in mid and high latitudes. The transport variability in the subpolar region is mainly driven by the horizontal circulation, while transports resulting from vertical salinity differences are more important at lower latitudes. Moreover, in the tropics transports related to shallow salinity differences are not negligible on interannual time scales.
    Description: Key Points: The net freshwater transport across the meridional boundaries dominates the freshwater content variations in mid and high latitudes. The importance of surface freshwater flux variations increases toward the tropics and on multi‐decadal time scales. Subpolar changes are mainly gyre driven, while overturning and especially the shallow overturning cells contribute more at lower latitudes.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://icdc.cen.uni-hamburg.de/en/gecco3.html
    Description: http://www.metoffice.gov.uk/hadobs/en4/download-en4-2-2.html
    Description: https://www.cen.uni-hamburg.de/en/icdc/data/atmosphere/hoaps.html
    Keywords: ddc:551.46 ; Atlantic Ocean ; freshwater content (FWC) ; regional changes ; GECCO3
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-02
    Description: We present a new discretization of sea ice dynamics on the sphere. The approach describes sea ice motion in tangent planes to the sphere. On each triangle of the mesh, the ice dynamics are discretized in a local coordinate system using a CD‐grid‐like non‐conforming finite element method. The development allows a straightforward coupling to the C‐grid like ocean model in Icosahedral Non‐hydrostatic‐Ocean model, which uses the same infrastructure as the sea ice module. Using a series of test examples, we demonstrate that the non‐conforming finite element discretization provides a stable realization of large‐scale sea ice dynamics on the sphere. A comparison with observation shows that we can simulate typical drift patterns with the new numerical realization of the sea ice dynamics.
    Description: Plain Language Summary: Sea ice in polar regions plays an important role in the exchange of heat and freshwater between the atmosphere and the ocean and hence for climate in general. Therefore climate models require a description (a set of equations) to express the large‐scale sea ice motion. We present a mathematical framework for describing sea ice flow in a global three‐dimensional Cartesian system. The idea is to express the sea ice motion in tangent planes. In this reference system, we solve the mathematical equations that describe the sea ice motion. The equations are approximated on a computational grid, that consists of triangles covering the surface of the sphere. On each triangle the sea ice velocity is placed at the edge midpoint. The development is motivated by the infrastructure of the ocean and sea ice model Icosahedral Non‐hydrostatic‐Ocean model. The old representation of sea ice dynamics uses a different design principle. Therefore, the communication between the sea ice and ocean model is computationally expensive. To circumvent this problem we have developed a numerical realization of sea ice dynamics that uses the same infrastructure as the ocean model. We show that the new realization of the sea ice dynamics is capable of capturing the sea ice drift.
    Description: Key Points: First realization of sea ice dynamics in tangent planes to the sphere. Discretization of the sea ice dynamics in a three‐dimensional Cartesian framework. Realization of the sea ice dynamics in the ocean and sea ice model Icosahedral Non‐hydrostatic‐Ocean model.
    Description: Max Planck Society
    Description: DFG
    Description: Collaborative Research Center TRR 181
    Description: Scientific Steering Committee
    Description: http://dx.doi.org/10.17632/2v5shnnmwx
    Description: https://mpimet.mpg.de/en/science/modeling-with-icon/code-availability
    Description: https://thredds.met.no/thredds/osisaf/osisaf_cdrseaiceconc.html
    Description: http://dx.doi.org/10.22033/ESGF/input4MIPs.10842
    Description: http://dx.doi.org/10.5067/INAWUWO7QH7B
    Keywords: ddc:551.3 ; CD‐grid like finite elements ; sea ice dynamics ; ICON‐O
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...