GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Der Anaesthesist 46 (1997), S. 613-615 
    ISSN: 1432-055X
    Keywords: Schlüsselwörter Atemgasklimatisierung ; Narkosegerät ; PhysioFlex ; Geschlossenes System ; Key words Climatisation of anaesthetic gases ; Anaesthesia machine ; PhysioFlex ; Closed system
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Abstract The PhysioFlex anaesthesia machine is designed to operate as a quantitative closed system. The gas in the system is circulated at 70 litres per minute. With its small soda lime canister and the integration of all components in a thermal insulating case it fulfils all prerequisites for excellent climatisation of the anaesthetic gases. The extent of warming and humidifying of the anaesthetic gases was monitored during extended neurosurgical operations using long tubes to the patient (3 m each) in an cold operating room (17–18 °C). Material and Methods: The time course of the temperature and the humidity of the inspired gases was analysed in six patients undergoing intracranial surgery [three male, three female; age 58,8±9.5 years; body weight 78.8±11.5 kg; duration 247.5±63.38 min (mean±SD)]. A capacitive humidity sensor (Vaisala, type HMM 30D) and a very small platinum resistor (Sensycon, type GR42105) were used to measure, at 5-min intervals, the relative humidity (rH) and temperature (T) of the gases in the inspiratory limb close to the Y-piece. At that position in the continuous gas stream, humidity and temperature are not dependent on the single breath but change gradually. With the temperature-dependent humidity content of 100% rH absolute humidity was calculated [6]. Results: Within 10 min 100% rH was achieved. Then humidity changes were only temperature dependent. Figure 1 shows the time course of mean inspiratory temperature and mean absolute humidity (mean±SD). After 30 min an average of 20 mg H2O/l gas was achieved. Analysing the single recordings, 20 mg/l was achieved between the 15th and 80th min. Steady state was reached after about 150 min at a level of more than 24 °C or more than 21.7 mg H2O/l. As demonstrated in the figure, a change of the soda lime canister (285th min) caused a marked decrease of inspiratory temperature and humidity. Conclusions: The climatisation of anaesthetic gases was faster and reached a higher level with the PhysioFlex than has been reported with conventional anaesthesia machines. Even under these environmental conditions – a cold operating room and long tubing allowing great heat loss to the environment – minimal climatisation of 20 mgH2O/l was reached within 30 min. The fast climatisation seems to be due to the operating principle, revolving the system volume with 70 l/min. This causes optimal usage of the heat and humidity generated by CO2 absorption in the soda lime, documented by the strong influence on climatisation of soda lime changes.
    Notes: Zusammenfassung Am Narkosegerät PhysioFlex wurde die Klimatisierung des Atemgases bei langdauernden intrakraniellen Eingriffen untersucht. Methoden: Das Narkosegerät wurde im quantitativ geschlossenen System betrieben. Die inspiratorische Atemgastemperatur und die relative Feuchte wurden an einer Meßstelle kurz vor dem Y-Stück bestimmt. Ergebnisse: Trotz ungünstiger Bedingungen wie kalter OP-Saal (17–18 °C) und lange Beatmungsschläuche, die eine große Wärmeabgabe an die Umgebung ermöglichen, konnte im Mittel nach 30 min wasserdampfgesättigtes Atemgas mit mehr als 20 mg H2O/l gemessen werden. Nach ca. 150 min stabilisierte sich die inspiratorische Atemgastemperatur im Mittel zwischen 24 und 25 °C entsprechend einer inspiratorischen Feuchte von 21,7 bis 23,3 mg H2O/l. Schlußfolgerung: Der selbst unter diesen ungünstigen Bedingungen gefundene Klimatisierungsverlauf ist dem an konventionellen Narkosegeräten überlegen.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Der Anaesthesist 46 (1997), S. 201-206 
    ISSN: 1432-055X
    Keywords: Schlüsselwörter Atemgasklimatisierung ; Modell ; Narkosegerät ; PhysioFlex ; geschlossenes System ; Key words Climatisation of anaesthetic gases ; model ; Anaesthesia machine ; PhysioFlex ; Closed system
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Abstract Closed-system anaesthesia provides the best prerequisites for optimal warming and humidification of anaesthetic gases. The PhysioFlex anaesthesia machine fascilitates quantitative closed-system anaesthesia. Furthermore, its design may improve the climatisation of the anaesthetic gases by revolving the system volume at 70 l/min, using a small soda-lime canister to allow optimal usage of the heat and moisture generated by CO2 absorption and by integrating all system components in thermally isolating housing. To determine the capacity of the PhysioFlex to climatise anaesthetic gases, we evaluated the heat and humidity profile at four characteristic places in the anaesthetic circuit under standardised conditions in a model. Materials and methods: In an air-conditioned room at 19–20° C ambient temperature, the PhysioFlex was operated with a fresh gas flow of less than 500 ml/min, similar to quantitative closed-system anaesthesia in adults. With a respiratory rate of 10/min and a tidal volume of 600 ml, a humidifier was ventilated, that delivered humidity-saturated gas at 33–34° C; 200 ml/min CO2 were added to the system at the humidifier to mimic the heat, moisture, and CO2 input of a patient into the anaesthetic circuit. A total of six series were performed, each starting with a cold and dry anaesthetic circuit. For 2 h the time-courses of temperature and humidity of the anaesthetic gases were measured at four distinct places: (1) in the soda-lime canister (M1); (2) at the outlet of the anaesthesia machine (M2); (3) at the inlet of the anaesthesia machine (M3); and (4) in the inspiratory limb close to the Y-piece (M4). Capacitive humidity sensors (VAISALA Type HMM 30 D without a protective cap) and very small thermocouples were used to measure relative humidity (rH) and temperature. The data were recorded at 5 min intervals. Due to the continuous gas stream in the system, the response time of the sensors, which is in the range of a few seconds, did not affect the accuracy of the measurement. With the temperature-dependent humidity content of 100% rH obtained from equation 1, absolute humidity was calculated. Results: The time courses of temperature and humidity at the different measuring points are depicted in Figs. 2 and 3, respectively. The steepest increase in temperature and humidity was observed at M1. Within 10 min 100% rH was achieved at all measuring points. Initially, there was a considerable temperature gradient between M1 and M2; this became gradually smaller, indicating system components with high heat capacities. There was only a small gradient between M2 and M4, indicating that there was only a small heat loss compared to the heat input. The recommended minimal climatisation of the anaesthetic gases of 20 mg H2O/l [20] was obtained within 10 min at M4. During the whole measuring period heat and humidity increased in the system, reaching a maximum at M4 after 120 min with average values of more than 28° C and 27 mg H2O/l, respectively. Conclusion: With the PhysioFlex anaesthesia machine employing closed-system conditions, minimal climatisation of anaesthetic gases was reached within 10 min. After a period of 120 min, the anaesthetic gases were nearly climatized to the extent recommended for long-term respirator therapy. To date, no comparable temperature and humidity level has been reported with conventional anaesthesia machines. The time course of the gradient between M1 and M2 may give an opportunity for further optimising the system in reducing heat loss after the soda-lime canister, the active heat and moisture source in the circuit. At about 32° C, the temperature in the soda-lime canister is 10–15° C less than in conventional anaesthesia machines. Thus, the use of thermally instable volatile anaesthetics in the PhysioFlex under closed-system conditions may be less critical than in conventional anaesthesia machines under minimal-flow conditions.
    Notes: Zusammenfassung Ziel: Das Wärme-Feuchte-Profil des Narkosegeräts PhysioFlex wurde am Modell beim Betrieb im geschlossenen System bestimmt. Methodik: An vier Meßstellen (Atemkalk, Geräteausgang, Geräteeingang, inspiratorisch vor dem Y-Stück) wurden der Temperatur- und Feuchteverlauf bei standardisierten Umgebungsbedingungen innerhalb der ersten 2 h nach Inbetriebnahme ermittelt. Ergebnisse: Nach 10 min herrschte an allen Meßorten Wasserdampfsättigung. Durch das konstruktionsbedingte Umwälzen des Systemvolumens mit 70 l/min kommt es zu einem schnellen Temperatur- und Feuchteausgleich im System. Die höchsten Werte (bis 32° C, bis 35 mg H2O/l Atemgas) werden über dem Atemkalk gemessen. Inspiratorisch werden im Mittel bereits nach 10 min mit 20 mg/l Feuchtewerte erreicht, die die minimalen Anforderungen an eine Narkosegasklimatisierung erfüllen. Nach 2 h werden mit annähernd 30 mg/l Feuchtewerte erreicht, die bislang an konventionellen Narkosegeräten nicht beschrieben werden konnten. Diskussion: Die im Vergleich zu konventionellen Narkosegeräten niedrigen Temperaturen über dem Atemkalk könnten den Einsatz thermolabiler Inhalationsanästhetika im PhysioFlex eher erlauben als in herkömmlichen Narkosegeräten unter „Minimal Flow”-Bedingungen. Der hohe Temperatur- und Feuchtegradient zwischen Atemkalk und Geräteausgang deutet auf einen Ansatzpunkt für eine weitere Optimierung hin.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Der Anaesthesist 46 (1997), S. 1064-1070 
    ISSN: 1432-055X
    Keywords: Schlüsselwörter Inhalationsanästhetika ; Atemkalk ; Wärmeentwicklung ; Key words Volatile anaesthetics ; Soda lime ; Heat production
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Abstract There are some case reports about excessive heat production in the absorbent canister when sevoflurane or enflurane are washed into a circle containing dried soda lime. This observation was often made in the DRÄGER ISO 8 circle system with the gas inlet upstream of the soda lime canister with the gas-flow from bottom to top. Methods: The temperature in the center of an absorbent canister was measured 3.0 cm and 7.5 cm above the bottom. Soda lime (DRÄGERSORB 800) was dried in an O2 stream for 2–3 days until there was no further loss in weight. 5 Vol% of desflurane, enflurane, isoflurane and sevoflurane in 2 l/min O2 or 4 Vol% of halothane in 2.5 l/min O2 were continuously fed into the canister. The concentration of the respective inhalational agents were measured after the soda lime canister using a DATEX Capnomac. Experiments were performed at ambient temperatures of 20–22 °C. Results: A considerable temperature increase was achieved with all anaesthetics. The highest temperatures were measured at the upper sensor with 56–58 °C for desflurane, 76–80 °C for enflurane and isoflurane, 84–88 °C for halothane and 126–130 °C for sevoflurane. IR-detection for some agents was considerably delayed or the time course indicated that other compounds might have formed which absorb at the wavelength monitored. Discussion: The high temperatures indicate the degradation rather than absorption of the volatile anaesthetics. CO is known to be degradation product of all currently used volatile anaesthetics except sevoflurane. Sevoflurane, however, produced the highest temperatures passing through dried soda lime. There are no reports about new specific breakdown products for sevoflurane on dried soda lime.
    Notes: Zusammenfassung Aufgrund einiger Fallberichte, bei denen eine starke Erhitzung des Absorberbehälters bei Kontakt von Sevofluran und Enfluran mit ausgetrocknetem Atemkalk beobachtet wurde, untersuchten wir die Temperaturentwicklung im Atemkalkbehälter des DRÄGER ISO 8 Kreisteils bei Passage volatiler Anästhetika durch getrockneten Atemkalk. Methoden: Im Zentrum des Absorberbehälters bei 3 und 7,5 cm Höhe wurde die Temperatur kontinuierlich gemessen. Durch den mit ausgetrocknetem DRÄGERSORB 800 Atemkalk gefüllten Absorber wurden Desfluran, Enfluran, Isofluran und Sevofluran mit 5 Vol% in 2 l/min O2 sowie Halothan mit 4 Vol% in 2,5 l/min O2 geleitet. Am Inspirationsventil wurden die Atemgaskonzentrationen gemessen (DATEX Capnomac). Ergebnisse: Bei allen Inhalationsanästhetika wurde eine deutliche Wärmeentwicklung beobachtet mit Maximalwerten von 56–58 °C für Desfluran, 76–80 °C für Enfluran und Isofluran, 84–88 °C für Halothan und 126–130 °C für Sevofluran. Einige Inhalationsanästhetika wurden erst spät detektiert, teils war der Kurvenverlauf nicht plausibel, so daß andere IR-absorbierende Substanzen vermutet werden. Diskussion: Die hohen Temperaturen deuten auf Zersetzungsreaktionen hin. Für Desfluran, Enfluran, Halothan und Isofluran ist CO als ein Zersetzungsprodukt beim Kontakt mit trockenem Atemkalk bekannt. Mit feuchtem Atemkalk sind für Sevofluran die Compounds A–E als Zersetzungsprodukte beschrieben, für die Reaktion mit trockenem Atemkalk, bei der die höchsten Temperaturen gemessen wurden, liegen bislang keine Daten über neu entstehende Reaktionsprodukte vor.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...