GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Arousal  (1)
Document type
Keywords
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of clinical monitoring and computing 14 (1998), S. 5-17 
    ISSN: 1573-2614
    Keywords: Anesthesia: general, depth, isoflurane, computer simulation ; Arousal ; Monitoring: anesthetic depth, electromyogram, EMG ; Memory: awareness
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Medicine
    Notes: Abstract Objective. After finding that craniofacial EMG preceding a stimulus was a poor predictor of movement response to that stimulus, we evaluated an alternative relation between EMG and movement: the difference in anesthetic depth between the endpoint of EMG responsiveness to a stimulus and endpoint of movement responsiveness to that stimulus. We expressed this relation as the increment of isoflurane between the two endpoints. Methods. We measured EMG over the frontalis muscle, over the corrugator muscle, and between the Fp2 and the mastoid process as patients emerged from general anesthesia during suture closing of the surgical incision. Anesthesia was decreased by controlled washout of isoflurane while maintaining 70% N2O, and brain isoflurane concentrations (CisoBrain) were calculated. We studied a control group of 10 patients who received only surgical stimulation, and 30 experimental patients who intermittently received test stimuli in addition to the surgical stimulation. Patients were observed for movement responses and EMG records were evaluated for EMG activation responses. We defined an EMG activation response to be a rapid voltage increase of at least 1.0 µV RMS above baseline, with a duration of at least 30 s, in at least one of the three EMG channels. Patient responses to stimuli were classified as either an EMG activation response without a move response (EMG+, a move response without an EMG activation response (MV+), both an EMG activation response and a move response (EMG+MV+), or no response. We defined the EMG+ endpoint to be the threshold between EMG+ response and nonresponse to a stimulus, and estimatedC isoBrain at this endpoint. We similarly defined the move endpoint and estimated the move endpointC isoBrain. We then calculated the increment ofC isoBrain at the EMG+ endpoint relative to the move endpoint. Main results. For the 30 experimental patients, the initial response to a test stimulus was an EMG+ in 14 patients (47%), an EMG+MV+ in 12 patients (40%), and a MV+ in 1 patient (3%); no response occurred by the time surgery was completed in 3 patients (10%). No response occurred in 7 of the control patients (70%). Of the 14 patients with an initial EMG+ response to a test stimulus, 9 patients later had a move response. For these 9 patients, the increment of CisoBrain between the EMG+ endpoint and move endpoint was 0.11 ± 0.04 vol% (mean ± SD). Conclusions. Our results suggest that, given the circumstances of our study, an EMG activation response by a nonmoving patient indicates that the patient is at an anesthetic level close to that at which movement could occur. However, because the first EMG activation response may occur simultaneously with movement, the EMG activation response cannot be relied upon to always herald a move response before it occurs. Our results also suggest that EMG responsiveness to a test stimulus may be used to estimate the anesthetic depth of an individual patient.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...