GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • spectroscopic  (3)
  • Arctic Ocean  (1)
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 39 (2012): L07606, doi:10.1029/2012GL051574.
    Description: The carbon system of the western Arctic Ocean is undergoing a rapid transition as sea ice extent and thickness decline. These processes are dynamically forcing the region, with unknown consequences for CO2 fluxes and carbonate mineral saturation states, particularly in the coastal regions where sensitive ecosystems are already under threat from multiple stressors. In October 2011, persistent wind-driven upwelling occurred in open water along the continental shelf of the Beaufort Sea in the western Arctic Ocean. During this time, cold (〈−1.2°C), salty (〉32.4) halocline water—supersaturated with respect to atmospheric CO2 (pCO2 〉 550 μatm) and undersaturated in aragonite (Ωaragonite 〈 1.0) was transported onto the Beaufort shelf. A single 10-day event led to the outgassing of 0.18–0.54 Tg-C and caused aragonite undersaturations throughout the water column over the shelf. If we assume a conservative estimate of four such upwelling events each year, then the annual flux to the atmosphere would be 0.72–2.16 Tg-C, which is approximately the total annual sink of CO2 in the Beaufort Sea from primary production. Although a natural process, these upwelling events have likely been exacerbated in recent years by declining sea ice cover and changing atmospheric conditions in the region, and could have significant impacts on regional carbon budgets. As sea ice retreat continues and storms increase in frequency and intensity, further outgassing events and the expansion of waters that are undersaturated in carbonate minerals over the shelf are probable.
    Description: Funding for this work was provided by the National Science Foundation (ARC1041102 – JTM, OPP0856244-RSP, and ARC1040694- LWJ), the National Oceanic and Atmospheric Administration (CIFAR11021- RHB) and the West Coast & Polar Regions Undersea Research Center (POFP00983 – CLM and JM).
    Description: 2012-10-11
    Keywords: Arctic Ocean ; CO2 fluxes ; Ocean acidification ; Upwelling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: image/tiff
    Format: application/msword
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of solution chemistry 11 (1982), S. 127-136 
    ISSN: 1572-8927
    Keywords: Lead ; lead bromide ; lead chloride ; mixed ligand ; complexation ; spectroscopic
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Experimentally and theoretically derived formation constants of mixed lead halide complexes are compared at 25.0°C and one molar ionic strength. The formation constant of PbBrCl, β11=79±10, is somewhat larger than the theoretical results, β11=55, predicted using the formation constants of PbBr2 and PbCl2. The molar absorptivity of PbBrCl was observed to be intermediate in character between the molar absorptivities of PbBr2 and PbCl2. Determinations of the formation constants of PbBr2Cl− and PbBrCl2 − are in reasonable agreement with the predictions based on the formation constants of PbBr3 − and PbCl3 −. Mixed ligand species dominated the complexation scheme of Pb(II) in our test media.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of solution chemistry 10 (1981), S. 243-251 
    ISSN: 1572-8927
    Keywords: Lead chloride ; molar absorptivity ; complexation ; medium dependence ; ultraviolet ; spectroscopic
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The molar absorptivities of Pb2+, PbCl+, PbCl2, and PbCl 3 − were obtained between 210 and 300 nm. Molar absorptivity data were used to determine lead speciation directly from Pb(II) absorbance characteristics in a variety of media including natural seawater. The absorbance characteristics of lead in a particular chloride medium reveal the lead chloride formation constants appropriate to that medium. Our analyses indicate that lead chloride formation constants are significantly smaller in MgCl2 media than in HCl at constant ionic strength.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of solution chemistry 7 (1978), S. 373-383 
    ISSN: 1572-8927
    Keywords: Ferric ; hydrolysis ; ionic strength ; temperature ; enthalpy ; ferric hydroxide ; ultraviolet ; spectroscopic
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Ultraviolet absorbance spectra of ferric ions in 0.68m NaClO4 were studied as a function of pH at 4.0, 14.9, and 25.0°C. The results provided an evaluation of the stability constant for the formation of FeOH2+ which is *β1=[FeOH +][H +]/[Fe 3+]. The enthalpy change for the reaction Fe3++H2O⇌ FeOH2++H+ was calculated as 10.0±0.3 kcal-mole−1. Increasing temperature was also found to promote the reaction Fe3++2H2O⇌ Fe(OH) 2 + +2H+. Our results were combined with the results of other to produce an expression describing the first hydrolysis equilibrium at ionic strengths between 0 and 3m and temperatures between 4.0 and 45.0°C at 1 atm total pressure. At 25°C and 0.68m the ionic strength *β1=1.90×10-3
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...