GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Book
    Book
    New York : Cambridge University Press
    Keywords: Buoyant convection ; Ocean circulation ; Atmospheric circulation ; Strömungsmechanik ; Strömungsmechanik ; Auftrieb ; Fluid ; Auftrieb
    Description / Table of Contents: "This book summarizes present understanding of buoyancy-driven flows for advanced students and researchers in oceanography, geophysical fluid dynamics, atmospheric science, and Earth science"--Provided by publisher
    Type of Medium: Book
    Pages: vii, 436 p., [16] p. of plates , ill. (some col.), maps , 27 cm
    ISBN: 1107008875 , 9781107008878
    DDC: 551.48
    RVK:
    Language: English
    Note: Includes bibliographical references and index , Machine generated contents note: 1. Gravity currents: theory and laboratory Paul Linden; 2. Theory of oceanic buoyancy-driven flows Joseph Pedlosky; 3. Buoyancy-forced circulation and downwelling in marginal seas Michael Spall; 4. Buoyant coastal currents Steve Lentz; 5. Overflows and convectively driven flows Sonya Legg; 6. An ocean climate modeling perspective on buoyancy-driven flows William Large; 7. Buoyancy-driven flows in eddying ocean models Anne Marie Tre;guier, Bruno Ferron, and Raphael Dussin; 8. Atmospheric buoyancy-driven flows Sylvie Malardel; 9. Volcanic flows Andy Woods; 10. Gravity flow on a steep slope Christophe Ancey.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 45 (2018): 2744-2751, doi:10.1002/2017GL076574.
    Description: Salinification has occurred in the South China Sea from late 2012 to the present, as shown by satellite Aquarius/Soil Moisture Active Passive data and Argo float data. This salinification follows a 20 year freshening trend that started in 1993. The salinification signal is strongest near the surface and extends downward under the seasonal thermocline to a depth of 150 m. The salinification occurs when the phase of the Pacific Decadal Oscillation switches from negative to positive. Diagnosis of the salinity budget suggests that an increasing net surface freshwater loss and the horizontal salt advection through the Luzon Strait driven by the South China Sea throughflow contributed to this ongoing salinification. In particular, a decrease in precipitation and enhanced Luzon Strait transport dominated the current intense salinification. Of particular interest is whether this salinification will continue until it reaches the previous maximum recorded in 1992.
    Description: Major State Research Development Program of China Grant Number: 2016YFC1402603; National Natural Science Foundation of China Grant Numbers: 41776025, 41476014, 41776026, 41676018; NOAA Climate Program Office MAPP Program Grant Number: NA15OAR4310088; NSF Physical Oceanography Program Grant Number: 1537136; National Science Foundation Grant Number: ICER‐1663704; Pearl River S&T Nova Program of Guangzhou; Open Project Program of State Key Laboratory of Tropical Oceanography Grant Number: LTOZZ1601
    Description: 2018-09-05
    Keywords: South China Sea ; Salinification ; Argo floats ; Aquarius/SMPA ; PDO
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 877–907, doi:10.1002/2015JC011290.
    Description: Accelerating since the early 1990s, the Greenland Ice Sheet mass loss exerts a significant impact on thermohaline processes in the sub-Arctic seas. Surplus freshwater discharge from Greenland since the 1990s, comparable in volume to the amount of freshwater present during the Great Salinity Anomaly events, could spread and accumulate in the sub-Arctic seas, influencing convective processes there. However, hydrographic observations in the Labrador Sea and the Nordic Seas, where the Greenland freshening signal might be expected to propagate, do not show a persistent freshening in the upper ocean during last two decades. This raises the question of where the surplus Greenland freshwater has propagated. In order to investigate the fate, pathways, and propagation rate of Greenland meltwater in the sub-Arctic seas, several numerical experiments using a passive tracer to track the spreading of Greenland freshwater have been conducted as a part of the Forum for Arctic Ocean Modeling and Observational Synthesis effort. The models show that Greenland freshwater propagates and accumulates in the sub-Arctic seas, although the models disagree on the amount of tracer propagation into the convective regions. Results highlight the differences in simulated physical mechanisms at play in different models and underscore the continued importance of intercomparison studies. It is estimated that surplus Greenland freshwater flux should have caused a salinity decrease by 0.06–0.08 in the sub-Arctic seas in contradiction with the recently observed salinification (by 0.15–0.2) in the region. It is surmised that the increasing salinity of Atlantic Water has obscured the freshening signal.
    Description: NSERC. Grant Numbers RGPIN 227438-09, RGPIN 04357 and RGPCC 433898; RFBR. Grant Number 13-05-00480, 14-05-00730, and 15-05-02457; NSF Grant Number: PLR-0804010, PLR-1313614, and PLR-1203720
    Description: 2016-07-25
    Keywords: Greenland Ice Sheet melting ; Greenland freshwater ; Thermohaline circulation ; Nordic Seas ; Sub-Arctic seas ; Baffin Bay ; Labrador Sea
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...