GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Superconductivity. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (856 pages)
    Edition: 3rd ed.
    ISBN: 9780124166103
    DDC: 537.6/23
    Language: English
    Note: Front Cover -- Superconductivity -- Copyright Page -- Dedication -- Contents -- Preface to the First Edition -- Preface to the Second Edition -- Preface to the Third Edition -- 1 Properties of the normal state -- I Introduction -- II Conducting electron transport -- III Chemical potential and screening -- IV Electrical conductivity -- V Frequency-dependent electrical conductivity -- VI Electron-phonon interaction -- VII Resistivity -- VIII Thermal conductivity -- IX Fermi surface -- X Energy gap and effective mass -- XI Electronic specific heat -- XII Phonon specific heat -- XIII Electromagnetic fields -- XIV Boundary conditions -- XV Magnetic susceptibility -- XVI Hall effect -- Problems -- Further Reading -- References -- 2 Phenomenon of superconductivity -- I Introduction -- II Brief history -- III Resistivity -- A Resistivity above Tc -- B Resistivity anisotropy -- C Anisotropy determination -- D Sheet resistance of films: resistance quantum -- IV Zero resistance -- A Resistivity drop at Tc -- B Persistent currents below Tc -- V Transition temperature -- VI Perfect diamagnetism -- VII Magnetic fields inside a superconductor -- VIII Shielding current -- IX Hole in superconductor -- X Perfect conductivity -- XI Transport current -- XII Critical field and current -- XIII Temperature dependences -- XIV Two-fluid model -- XV Critical magnetic field slope -- XVI Critical surface -- Problems -- References -- 3 Transport properties -- I Introduction -- II Inductive superconducting circuits -- A Parallel inductances -- B Inductors -- C Alternating current impedance -- III Current density equilibration -- IV Critical current -- A Anisotropy -- B Magnetic field dependence -- V Magnetoresistance -- A Fields applied above Tc -- B Fields applied below Tc -- C Fluctuation conductivity -- D Flux flow effects -- VI Hall effect -- A Hall effect above Tc. , B Hall effect below Tc -- VII Thermal conductivity -- A Heat and entropy transport -- B Thermal conductivity in the normal state -- C Thermal conductivity below Tc -- D Magnetic field effects -- VIII Thermoelectric and thermomagnetic effects -- A Thermal flux of vortices -- B Seebeck effect -- C Nernst effect -- D Peltier effect -- E Ettingshausen effect -- F Righi-Leduc effect -- IX Photoconductivity -- X Transport entropy -- Problems -- References -- 4 Thermodynamic properties -- I Introduction -- II Specific heat above Tc -- III Discontinuity at Tc -- IV Specific heat below Tc -- V Density of states and Debye temperature -- VI Thermodynamic variables -- VII Thermodynamics of a normal conductor -- VIII Thermodynamics of a superconductor -- IX Superconductor in zero field -- X Superconductor in a magnetic field -- XI Normalized thermodynamic equations -- XII Specific heat in a magnetic field -- XIII Further discussion of the specific heat -- XIV Order of the transition -- XV Thermodynamic conventions -- XVI Concluding remarks -- Problems -- References -- 5 Magnetic properties -- I Introduction -- II Susceptibility -- III Magnetization and magnetic moment -- IV Magnetization hysteresis -- V ZFC and FC -- VI Granular samples and porosity -- VII Magnetization anisotropy -- VIII Measurement techniques -- IX Comparison of susceptibility and resistivity results -- X Ellipsoids in magnetic fields -- XI Demagnetization factors -- XII Measured susceptibilities -- XIII Sphere in a magnetic field -- XIV Cylinder in a magnetic field -- XV ac susceptibility -- XVI Temperature-dependent magnetization -- A Pauli-paramagnetism -- B Paramagnetism -- C Antiferromagnetism -- XVII Pauli limit and upper-critical field -- XVIII Ideal Type II superconductor -- XIX Magnets -- Problems -- References -- 6 Ginzburg-Landau phenomenological theory -- I Introduction. , II Order parameter -- III Ginzburg-Landau equations -- IV Zero-field case deep inside superconductor -- V Zero-field case near superconductor boundary -- VI Fluxoid quantization -- VII Penetration depth -- VIII Critical current density -- IX London equations -- X Exponential penetration -- XI Normalized Ginzburg-Landau equations -- XII Type I and Type II superconductivity -- XIII Upper critical field BC2 -- XIV Structure of a vortex -- A Differential equations -- B Solutions for short distances -- C Solution for large distances -- Problems -- Further reading -- References -- 7 Bardeen-Cooper-Schrieffer microscopic theory -- I Introduction -- II Cooper pairs -- III The BCS order parameter -- IV The BCS Hamiltonian -- V The Bogoliubov transformation and the self-consistent gap equation -- A Solution of the gap equation near Tc -- B Solution at T=0 -- C Nodes of the order parameter -- D Single band singlet pairing -- E s-Wave pairing -- F Zero-temperature gap -- G d-Wave order parameter -- H Multiband singlet pairing -- VI Response of a superconductor to a magnetic field -- VII Hubbard models -- VIII Electron configurations -- A Configurations and orbitals -- B Tight-binding approximation -- IX Hubbard model -- A Wannier functions and electron operators -- B One-state Hubbard model -- C Electron-hole symmetry -- D Half-filling and antiferromagnetic correlations -- E t-J model -- F Resonant-valence bonds -- G Spinons, holons, slave bosons, anyons, and semions -- H Three-state Hubbard model -- I Energy bands -- J Metal-insulator transition -- X Band structure of YBa2Cu3O7 -- A Energy bands and DOS -- B Fermi surface: plane and chain bands -- XI Fermi liquids -- XII Fermi surface nesting -- XIII CDWs, SDWs, and spin bags -- XIV Mott insulator transition -- Problems -- Further Reading -- References -- 8 Type I superconductivity and the intermediate state. , I Introduction -- II Intermediate state -- III Surface fields and intermediate-state configurations -- IV Type I ellipsoid -- V Susceptibility -- VI Gibbs free energy for the intermediate state -- VII Boundary-wall energy and domains -- VIII Current-induced intermediate state -- IX Recent developments in Type I superconductivity -- A History and general remarks -- B The intermediate state -- C Magneto-optics with in-plane magnetization-a tool to study flux patterns -- D AC response in the intermediate state of Type I superconductors -- Problems -- References -- 9 Type II superconductivity -- I Introduction -- II Internal and critical fields -- A Magnetic field penetration -- B Ginzburg-Landau parameter -- C Critical fields -- III Vortices -- A Magnetic fields -- B High-kappa approximation -- C Average internal field and vortex separation -- D Vortices near lower critical field -- E Vortices near upper critical field -- F Contour plots of field and current density -- G Closed vortices -- IV Vortex anisotropies -- A Core region and current flow -- B Critical fields -- C High-kappa approximation -- D Pancake vortices -- E Oblique alignment -- V Individual vortex motion -- A Vortex repulsion -- B Pinning -- C Equation of motion -- D Onset of motion -- E Magnus force -- F Steady-state motion -- G Intrinsic pinning -- H Vortex entanglement -- VI Flux motion -- A Flux continuum -- B Entry and exit -- C 2D fluid -- D Dimensionality -- E Solid and glass phases -- F Flux in motion -- G Transport current in a magnetic field -- H Dissipation -- I Magnetic phase diagram -- VII Fluctuations -- A Thermal fluctuations -- B Characteristic length -- C Entanglement of flux lines -- D Irreversibility line -- E Kosterlitz-Thouless transition -- Problems -- References -- 10 Irreversible magnetic properties -- I Introduction -- II Critical states. , III Current-field relationships -- A Transport and shielding current -- B Maxwell curl equation and pinning force -- C Determination of current-field relationships -- IV Critical-state models -- A Requirements of a critical-state model -- B Model characteristics -- V Reversed critical states and hysteresis -- A Reversing field -- B Magnetization -- C Hysteresis loops -- D Magnetization current -- VI Perfect Type I superconductor -- VII Concluding remarks -- References -- 11 Magnetic penetration depth -- I Isotropic London electrodynamics -- II Penetration depth in anisotropic samples -- III Experimental methods -- IV Absolute value of the penetration depth -- V Penetration depth and the superconducting gap -- A Semiclassical model for superfluid density -- a Isotropic Fermi surface -- b Anisotropic Fermi surface, isotropic gap function -- B Superconducting gap -- C Mixed gaps -- D Low temperatures -- a s-wave pairing -- b d-wave pairing -- c p-wave pairing -- VI Effect of disorder and impurities on the penetration depth -- A Nonmagnetic impurities -- B Magnetic impurities -- VII Surface ABS -- VIII Nonlocal electrodynamics of nodal superconductors -- IX Nonlinear Meissner effect -- X AC penetration depth in the mixed state (small amplitude linear response) -- XI The proximity effect and its identification by using AC penetration depth measurements -- XII Eilenberger two-gap scheme: the γ-model -- A Superfluid density -- References -- 12 Upper critical field with magnetic and non-magnetic scattering -- I Introduction -- II The Bc2 Problem -- A T& -- rarr -- Tc -- B Strong pair breaking at Tc& -- rarr -- 0 -- C Numerical results -- III Field-dependent spin-flip scattering -- IV The d-wave case -- V Discussion -- References -- 13 Energy gap and tunneling -- I Introduction -- II Phenomenon of tunneling -- A Conduction-electron energies. , B Types of tunneling.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Superconductivity. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (671 pages)
    Edition: 2nd ed.
    ISBN: 9780080550480
    DDC: 537.6/23
    Language: English
    Note: Front Cover -- Superconductivity -- Copyright Page -- Table of Contents -- Preface to the First Edition -- Preface to the Second Edition -- Chapter 1 Properties of the Normal State -- I. Introduction -- II. Conduction Electron Transport -- III. Chemical Potential and Screening -- IV. Electrical Conductivity -- V. Frequency Dependent Electrical Conductivity -- VI. Electron-Phonon Interaction -- VII. Resistivity -- VIII. Thermal Conductivity -- IX. Fermi Surface -- X. Energy Gap and Effective Mass -- XI. Electronic Specific Heat -- XII. Phonon Specific Heat -- XIII. Electromagnetic Fields -- XIV. Boundary Conditions -- XV. Magnetic Susceptibility -- XVI. Hall Effect -- Further Reading -- Problems -- Chapter 2 Phenomenon of Superconductivity -- I. Introduction -- II. Brief History -- III. Resistivity -- A. Resistivity above Tc -- B. Resistivity Anisotropy -- C. Anisotropy Determination -- D. Sheet Resistance of Films: Resistance Quantum -- IV. Zero Resistance -- A. Resistivity Drop at Tc -- B. Persistent Currents below Tc -- V. Transition Temperature -- VI. Perfect Diamagnetism -- VII. Magnetic Fields Inside a Superconductor -- VIII. Shielding Current -- IX. Hole in Superconductor -- X. Perfect Conductivity -- XI. Transport Current -- XII. Critical Field and Current -- XIII. Temperature Dependences -- XIV. Two Fluid Model -- XV. Critical Magnetic Field Slope -- XVI. Critical Surface -- Further Reading -- Problems -- Chapter 3 Classical Superconductors -- I. Introduction -- II. Elements -- III. Physical Properties of Superconducting Elements -- IV. Compounds -- V. Alloys -- VI. Miedema's Empirical Rules -- VII. Compounds with the NaCl Structure -- VIII. Type A15 Compounds -- IX. Laves Phases -- X. Chevrel Phases -- XI. Chalcogenides and Oxides -- Problems -- Chapter 4 Thermodynamic Properties -- I. Introduction -- II. Specific Heat above TC. , III. Discontinuity at TC -- IV. Specific Heat below TC -- V. Density of States and Debye Temperature -- VI. Thermodynamic Variables -- VII. Thermodynamics of a Normal Conductor -- VIII. Thermodynamics of a Superconductor -- IX. Superconductor in Zero Field -- X. Superconductor in a Magnetic Field -- XI. Normalized Thermodynamic Equations -- XII. Specific Heat in a Magnetic Field -- XIII. Further Discussion of the Specific Heat -- XIV. Order of the Transition -- XV. Thermodynamic Conventions -- XVI. Concluding Remarks -- Problems -- Chapter 5 Magnetic Properties -- I. Introduction -- II. Susceptibility -- III. Magnetization and Magnetic Moment -- IV. Magnetization Hysteresis -- V. Zero Field Cooling and Field Cooling -- VI. Granular Samples and Porosity -- VII. Magnetization Anisotropy -- VIII. Measurement Techniques -- IX. Comparison of Susceptibility and Resistivity Results -- X. Ellipsoids in Magnetic Fields -- XI. Demagnetization Factors -- XII. Measured Susceptibilities -- XIII. Sphere in a Magnetic Field -- XIV. Cylinder in a Magnetic Field -- XV. ac Susceptibility -- XVI. Temperature-Dependent Magnetization -- A. Pauli Paramagnetism -- B. Paramagnetism -- C. Antiferromagnetism -- XVII. Pauli Limit and Upper Critical Field -- XVIII. Ideal Type II Superconductor -- XIX. Magnets -- Problems -- Chapter 6 Ginzburg-Landau Theory -- I. Introduction -- II. Order Parameter -- III. Ginzburg-Landau Equations -- IV. Zero-Field Case Deep Inside Superconductor -- V. Zero-Field Case near Superconductor Boundary -- VI. Fluxoid Quantization -- VII. Penetration Depth -- VIII. Critical Current Density -- IX. London Equations -- X. Exponential Penetration -- XI. Normalized Ginzburg-Landau Equations -- XII. Type I and Type II Superconductivity -- XIII. Upper Critical Field BC2 -- XIV. Structure of a Vortex -- A. Differential Equations. , B. Solutions for Short Distances -- C. Solution for Large Distances -- Further Reading -- Problems -- Chapter 7 BCS Theory -- Introduction -- II. Cooper Pairs -- III. The BCS Order Parameter -- IV. The BCS Hamiltonian -- V. The Bogoliubov Transformation -- VI. The Self-Consistent Gap Equation -- A. Solution of the Gap Equation Near Tc -- B. Solution At T = 0 -- C. Nodes of the Order Parameter -- D. Single Band Singlet Pairing -- E. S-Wave Pairing -- F. Zero-Temperature Gap -- G. D-Wave Order Parameter -- H. Multi-Band Singlet Pairing -- VII. Response of a Superconductor to a Magnetic Field -- Appendix A. Derivation of the Gap Equation Near Tc -- Further Reading -- Chapter 8 Cuprate Crystallographic Structures -- I. Introduction -- II. Perovskites -- A. Cubic Form -- B. Tetragonal Form -- C. Orthorhombic Form -- D. Planar Representation -- III. Perovskite-Type Superconducting Structures -- IV. Aligned YBa2Cu3O7 -- A. Copper Oxide Planes -- B. Copper Coordination -- C. Stacking Rules -- D. Crystallographic Phases -- E. Charge Distribution -- F. YBaCuO Formula -- G. YBa2Cu4O8 and Y2Ba4Cu7O15 -- V. Aligned HgBaCaCuO -- VI. Body Centering -- VII. Body-Centered La2CuO4, Nd2CuO4 and Sr2RuO4 -- A. Unit Cell of La2CuO4 Compound (T Phase) -- B. Layering Scheme -- C. Charge Distribution -- D. Superconducting Structures -- E. Nd2CuO4 Compound (T' Phase) -- F. La2-x-yRxSryCuO4 Compounds (T* Phase) -- G. Sr2RuO4 Compound (T Phase) -- VIII. Body-Centered BiSrCaCuO and TlBaCaCuO -- A. Layering Scheme -- B. Nomenclature -- C. Bi-Sr Compounds -- D. Tl-Ba Compounds -- E. Modulated Structures -- F. Aligned TI-Ba Compounds -- G. Lead Doping -- IX. Symmetries -- X. Layered Structure of the Cuprates -- XI. Infinite-Layer Phases -- XII. Conclusions -- Further Reading -- Problems -- Chapter 9 Unconventional Superconductors -- I. Introduction -- II. Heavy Electron Systems. , III. Magnesium Diboride -- A. Structure -- B. Physical Properties -- C. Anisotropies -- D. Fermi Surfaces -- E. Energy Gaps -- IV. Borocarbides and Boronitrides -- A. Crystal Structure -- B. Correlations of Superconducting Properties with Structure Parameters -- C. Density of States -- D. Thermodynamic and Electronic Properties -- E. Magnetic Interactions -- F. Magnetism of HoNi2B2C -- V. Perovskites -- A. Barium-Potassium-Bismuth Cubic Perovskite -- B. Magnesium-Carbon-Nickel Cubic Perovskite -- C. Barium-Lead-Bismuth Lower Symmetry Perovskite -- VI. Charge-Transfer Organics -- VII. Buckminsterfullerenes -- VIII. Symmetry of the Order Parameter in Unconventional Superconductors -- A. Symmetry of the Order Parameter in Cuprates -- a. Hole-doped high-Tc cuprates -- b. Electron-doped cuprates -- B. Organic Superconductors -- C. Influence of Bandstructure on Superconductivity -- a. MgB2 -- b. NbSe2 -- c. CaAlSi -- D. Some Other Superconductors -- a. Heavy-fermion superconductors -- b. Borocarbides -- c. Sr2RuO4 -- d. MgCNi3 -- IX. Magnetic Superconductors -- A. Coexistence of superconductivity and magnetism -- B. Antiferromagnetic Superconductors -- C. Magnetic Cuprate Superconductor - SmCeCuO -- Chapter 10 Hubbard Models and Band Structure -- I. Introduction -- II. Electron Configurations -- A. Configurations and Orbitals -- B. Tight-Binding Approximation -- III. Hubbard Model -- A. Wannier Functions and Electron Operators -- B. One-State Hubbard Model -- C. Electron-Hole Symmetry -- D. Half-Filling and Antiferromagnetic Correlations -- E. t-J Model -- F. Resonant-Valence Bonds -- G. Spinons, Holons, Slave Bosons, Anyons, and Semions -- H. Three-State Hubbard Model -- I. Energy Bands -- J. Metal-Insulator Transition -- IV. Band Structure of YBa2Cu3O7 -- A. Energy Bands and Density of States -- B. Fermi Surface: Plane and Chain Bands. , V. Band Structure of Mercury Cuprates -- VI. Band Structures of Lanthanum, Bismuth, and Thallium Cuprates -- A. Orbital States -- B. Energy Bands and Density of States -- VII. Fermi Liquids -- VIII. Fermi Surface Nesting -- IX. Charge-Density Waves, Spin-Density Waves, and Spin Bags -- X. Mott-Insulator Transition -- XI. Discussion -- Further Reading -- Problems -- Chapter 11 Type I Superconductivity and the Intermediate State -- I. Introduction -- II. Intermediate State -- III. Surface Fields and Intermediate-State Configurations -- IV. Type I Ellipsoid -- V. Susceptibility -- VI. Gibbs Free Energy for the Intermediate State -- VII. Boundary-Wall Energy and Domains -- VIII. Thin Film in Applied Field -- IX. Domains in Thin Films -- X. Current-Induced Intermediate State -- XI. Recent Developments in Type I Superconductivity -- A. History and General Remarks -- B. The Intermediate State -- C. Magneto-Optics with In-Plane Magnetization - a Tool to Study Flux Patterns -- D. AC Response in the Intermediate State of Type I Superconductors -- XII. Mixed State in Type II Superconductors -- Problems -- Chapter 12 Type II Superconductivity -- I. Introduction -- II. Internal and Critical Fields -- A. Magnetic Field Penetration -- B. Ginzburg-Landau Parameter -- C. Critical Fields -- III. Vortices -- A. Magnetic Fields -- B. High-Kappa Approximation -- C. Average Internal Field and Vortex Separation -- D. Vortices near Lower Critical Field -- E. Vortices near Upper Critical Field -- F. Contour Plots of Field and Current Density -- G. Closed Vortices -- IV. Vortex Anisotropies -- A. Critical Fields and Characteristic Lengths -- B. Core Region and Current Flow -- C. Critical Fields -- D. High-Kappa Approximation -- E. Pancake Vortices -- F. Oblique Alignment -- V. Individual Vortex Motion -- A. Vortex Repulsion -- B. Pinning -- C. Equation of Motion. , D. Onset of Motion.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Superconductivity. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (637 pages)
    Edition: 1st ed.
    ISBN: 9781483219349
    Language: English
    Note: Front Cover -- Superconductivity -- Copyright Page -- Table of Contents -- Preface -- Chapter 1. Properties of the Normal State -- I. Introduction -- II. Conduction Electron Transport -- III. Chemical Potential and Screening -- IV. Electrical Conductivity -- V. Frequency Dependent Electrical Conductivity -- VI. Electron-Phonon Interaction -- VII. Resistivity -- VIII. Thermal Conductivity -- IX. Fermi Surface -- X. Energy Gap and Effective Mass -- XI. Electronic Specific Heat -- XII. Phonon Specific Heat -- XIII. Electromagnetic Fields -- XIV. Boundary Conditions -- XV. Magnetic Susceptibility -- XVI. Hall Effect -- Further Reading -- Problems -- Chapter 2. The Phenomenon of Superconductivity -- I. Introduction -- II. A Brief History -- III. Resistivity -- IV. Zero Resistance -- V. Transition Temperature -- VI. Perfect Diamagnetism -- VII. Fields inside a Superconductor -- VIII. Shielding Current -- IX. Hole in Superconductor -- X. Perfect Conductivity -- XI. Transport Current -- XII. Critical Field and Current -- XIII. Temperature Dependences -- XIV. Concentration of Super Electrons -- XV. Critical Magnetic Field Slope -- XVI. Critical Surface -- Further Reading -- Problems -- Chapter 3. The Classical Superconductors -- I. Introduction -- II. Elements -- III. Physical Properties of Superconducting Elements -- IV. Compounds -- V. Alloys -- VI. Miedema's Empirical Rules for Alloys -- VII. Compounds with the NaCl Structure -- VIII. Type A15 Compounds -- IX. Laves Phases -- X. Chevrel Phases -- XI. Heavy Electron Systems -- XII. Charge-Transfer Organics -- XIII. Chalcogenides and Oxides -- XIV. Barium Lead-Bismuth Oxide Perovskite -- XV. Barium-Potassium Bismuth-Oxide Cubic Perovskite -- XVI. Buckminsterfullerenes -- XVII. Borocarbides -- Further Reading -- Problems -- Chapter 4. Thermodynamic Properties -- I. Introduction. , II. Specific Heat above Tc -- III. Discontinuity at Tc -- IV. Specific Heat below Tc -- V. Density of States and Debye Temperature -- VI. Thermodynamic Variables -- VII. Thermodynamics of a Normal Conductor -- VIII. Thermodynamics of a Superconductor -- IX. Superconductor in Zero Field -- X. Superconductor in a Magnetic Field -- XI. Normalized Thermodynamic Equations -- XII. Specific Heat in a Magnetic Field -- XIII. Evaluating the Specific Heat -- XIV. Order of the Transition -- XV. Thermodynamic Conventions -- XVI. Concluding Remarks -- Further Reading -- Problems -- Chapter 5. Ginzburg-Landau Theory -- I. Introduction -- II. Order Parameter -- III. Ginzburg-Landau Equations -- IV. Zero-Field Case Deep inside Superconductor -- V. Zero-Field Case near Superconductor Boundary -- VI. Fluxoid Quantization -- VII. Penetration Depth -- VIII. Critical Current Density -- IX. London Equations -- X. Exponential Penetration -- XI. Normalized Ginzburg-Landau Equations -- XII. Type I and Type II Superconductivity -- XIII. Upper Critical Field Bc2 -- XIV. Quantum Vortex -- Further Reading -- Problems -- Chapter 6. BCS Theory -- I. Introduction -- II. Cooper Pairs -- III. BCS Order Parameter -- IV. Generalized BCS Theory -- V. Singlet Pairing in a Homogeneous Superconductor -- VI. Self-Consistent Equation for the Energy Gap -- VII. Response of a Superconductor to a Magnetic Field -- Further Reading -- Chapter 7. Perovskite and Cuprate Crystallographic Structures -- I. Introduction -- II. Perovskites -- III. Cubic Barium Potassium Bismuth Oxide -- IV. Barium Lead Bismuth Oxide -- V. Perovskite-Type Superconducting Structures -- VI. Aligned YBa2Cu3O7 -- VII. Body Centering -- VIII. Body-Centered La2CuO4 and Nd2CuO4 -- IX. Body-Centered BiSrCaCuO and TIBaCaCuO -- X. Aligned HgBaCaCuO -- XI. Buckminsterfullerenes -- XII. Symmetries -- XIII. Crystal Chemistry. , XIV. Comparison with Classical Superconductor Structures -- XV. Conclusions -- Further Reading -- Problems -- Chapter 8. Hubbard Models and Band Structure -- I. Introduction -- II. Reciprocal Space and Brillouin Zone -- III. Free Electron Bands in Two Dimensions -- IV. Nearly Free Electron Bands -- V. Fermi Surface in Two Dimensions -- VI. Electron Configurations -- VII. Hubbard Models -- VIII. Transition Metal Elements -- IX. A15 Compounds -- X. Buckminsterfullerenes -- XI. BaPb1_xBixO3 System -- XII. Ba1_xKxBiO3 System -- XIII. Band Structure of YBa2Cu3O7 -- XIV. Band Structure of (La1_xSrx)2CuO4 -- XV. Bismuth and Thallium Compounds -- XVI. Mercury Compounds -- XVII. Fermi Liquids -- XVIII. Fermi Surface Nesting -- XIX. Charge-Density Waves, Spin- Density Waves, and Spin Bags -- XX. Mott-Insulator Transition -- XXI. Anderson Interlayer Tunneling Scheme -- XXII. Comparison with Experiment -- XXIII. Discussion -- Further Reading -- Problems -- Chapter 9. Type II Superconductivity -- I. Introduction -- II. Internal and Critical Fields -- III. Vortices -- IV. Vortex Anisotropies -- V. Individual Vortex Motion -- VI. Flux Motion -- VII. Fluctuations -- VIII. Quantized Flux -- Further Reading -- Problems -- Chapter 10. Magnetic Properties -- I. Introduction -- II. Susceptibility -- III. Magnetization and Magnetic Moment -- IV. Magnetization Hysteresis -- V. Zero Field Cooling and Field Cooling -- VI. Granular Samples and Porosity -- VII. Magnetization Anisotropy -- VIII. Measurement Techniques -- IX. Comparing Susceptibility and Resistivity Results -- X. Ellipsoids in Magnetic Fields -- XI. Demagnetization Factors -- XII. Measured Susceptibilities -- XIII. Sphere in a Magnetic Field -- XIV. Cylinder in a Magnetic Field -- XV. ac Susceptibility -- XVI. Temperature-Dependent Magnetism -- XVII. Pauli Limit and Upper Critical Fields. , XVIII. Ideal Type II Superconductor -- XIX. Magnets -- Further Reading -- Problems -- Chapter 11. Intermediate and Mixed States -- I. Introduction -- II. Intermediate State -- III. Surface Fields and Intermediate- State Configuration -- IV. Type I Ellipsoid -- V. Susceptibility -- VI. Gibbs Free Energy for the Intermediate State -- VII. Boundary-Wall Energy and Domains -- VIII. Thin Film in Applied Field -- IX. Domains in Thin Films -- X. Current-Induced Intermediate State -- XI. Mixed State in Type II Superconductors -- Further Reading -- Problems -- Chapter 12. Critical States -- I. Introduction -- II. Current-Field Relations -- III. Critical-State Models -- IV. Fixed Pinning Model -- V. Bean Model -- VI. Reversed Critical States and Hysteresis -- VII. Kim Model -- VIII. Comparison of Critical-State Models with Experiment -- IX. Concluding Remarks -- Further Reading -- Problems -- Chapter 13. Tunneling -- I. Introduction -- II. The Phenomenon of Tunneling -- III. Energy Level Schemes -- IV. Tunneling Processes -- V. Quantitative Treatment of Tunneling -- VI. Tunneling Measurements -- VII. Josephson Effect -- VIII. Magnetic Field and Size Effects -- Further Reading -- Problems -- Chapter 14. Transport Properties -- I. Introduction -- II. Inductive Superconducting Circuits -- III. Current Density Equilibration -- IV. Critical Current -- V. Magnetoresistance -- VI. Hall Effect -- VII. Thermal Conductivity -- VIII. Thermoelectric and Thermomagnetic Effects -- IX. Photoconductivity -- X. Transport Entropy -- Further Reading -- Problems -- Chapter 15. Spectroscopic Properties -- I. Introduction -- II. Vibrational Spectroscopy -- III. Optical Spectroscopy -- IV. Photoemission -- V. X-ray Absorption Edges -- VI. Inelastic Neutron Scattering -- VII. Positron Annihilation -- VIII. Magnetic Resonance -- Further Reading -- Problems -- References -- Appendix. , Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    New York, NY :Springer,
    Keywords: Superconductors. ; Superconductivity. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (216 pages)
    Edition: 1st ed.
    ISBN: 9780306470691
    Series Statement: Selected Topics in Superconductivity Series
    DDC: 537.6/22
    Language: English
    Note: Intro -- Contents.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1530-0358
    Keywords: Anorectal fistula ; Fibrin glue ; Autologous fibrin adhesive
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract PURPOSE: Our goal was to determine if autologous fibrin tissue adhesive derived from the precipitation of fibrinogen using a combination of ethanol and freezing, could be used to completely close both simple and complex fistulas-inano. METHODS: A 26-patient pilot study was performed in which 100 ml of a patient's blood was drawn 90 minutes before surgery. Autologous fibrin tissue adhesive was prepared. In the operating room the patient underwent an examination under anesthesia, and the primary and secondary fistula tract openings were attempted to be identified. The fistula tract was curetted, and autologous fibrin tissue adhesive was injected into the secondary fistula tract opening until fibrin glue was seen coming from the primary opening. A petroleum jelly gauze was then applied over the secondary opening, and the patient was sent home. Follow-up visits were scheduled for one week, one month, three months, and one year later. RESULTS: Twenty-six patients received autologous fibrin tissue adhesive fistula injections, with a mean follow-up of 3.5 months. Initial results were encouraging. Twenty-one of 26 patients (81 percent) had successful initial closure of their fistulas. Two of five failures were injected a second time, and one closed, giving an overall successful closure rate of 85 percent (22/26 patients). Of five patients who failed, mean time to failure was 3.8 weeks. In addition, there was no evidence of infection or complications related to the procedure. CONCLUSION: Our initial results are optimistic and require further support through longer follow-up data. Fibrin glue treatment of anorectal fistulas offers a unique mode of management that is safe, simple, and easy for the surgeon to perform. By using autologous fibrin tissue adhesive the patient avoids the risk of anal incontinence and the discomfort of prolonged wound healing which may be associated with fistulotomy.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1530-0358
    Keywords: Fistulas-in-ano ; Anorectal fistula ; Fibrin glue ; Fibrin adhesive
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract PURPOSE: Fibrin adhesive has been successfully used to treat fistulas-in-ano, but long-term data have been lacking. We report the results of our 18-month study examining the repair of fistulas-in-ano using autologous and commercial fibrin adhesive. METHODS: A 79-patient, prospective, nonrandomized clinical trial was performed in which fibrin adhesive was used to repair fistulas-in-ano. Twenty-six patients were treated with autologous fibrin tissue adhesive made from their own blood, and 53 patients were treated with commercial fibrin sealant. In the operating room the patient underwent an examination under anesthesia, with an attempt to identify the primary and secondary fistula tract openings. The fistula tract was then curetted. Fibrin adhesive was injected into the secondary fistula tract opening until adhesive was seen coming from the primary opening. A petroleum jelly gauze was then applied over both the primary and secondary openings, and the patient was sent home. Follow-up visits occurred one week, one month, three months, and one year later. RESULTS: Fourteen of 26 (54 percent) patients treated with autologous fibrin tissue adhesive made from their own blood had complete closure of their fistulas after a one-year follow-up, whereas 34 of 53 (64 percent) patients treated with commercial fibrin sealant had closure of their fistulas. Most treatment failures occurred within the first 3 months, but late failures were seen as far as 11 months postoperative. CONCLUSIONS: Fibrin tissue adhesive offers a unique mode of managing fistulas-in-ano, which is surgically less invasive, but recurrences up to one year later are being seen. Longer follow-up and further research is recommended for improvement.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...