GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Analytical method; Azores_comp; Azores-Iberian_Peninsula_comp; Balearic_Sea_comp; Barents_Sea_comp; Bay_of_Biscay_comp; Bay_of_Malaga_comp; Bear_Seamount_comp; Canary_Islands_comp; Cape_Blanc_comp; Cape_Verde_comp; Catalonian_Sea_comp; Cephalopods; Class; Comment; Condor_comp; Crustacea; DEPTH, water; elasmobranchs; Equatorial_comp; Event label; Family; fish; France_comp; Gear; Gulf_of_Lions_comp; Iberian_Peninsula_comp; Institution; Investigator; Jellyfish; LATITUDE; Location; LONGITUDE; marine mammals; marine turtles; Mediterranean_comp; mesopelagic food web; Method comment; Month; Newfoundland_Labrador_comp; North_Sea_comp; North_Water_polynya_comp; Northeast_Atlantic_comp; Number of individuals; Ocean and sea region; Order; Organisms; Persistent Identifier; Phylum; Portugal_comp; Record number; Reference/source; Replicates; salps; Scotland_comp; Seabirds; Size; Spain_comp; Strait_of_Gibraltar_comp; SUMMER; Sustainable Management of Mesopelagic Resources; Taxon/taxa; Taxon/taxa, unique identification (Semantic URI); Taxon/taxa, unique identification (URI); Thracian_Sea_comp; Tissue Descriptor; Trophic level; Trophic level, standard deviation; trophic position; Tyrrhenian_Sea_comp; Wales_comp; Year of observation  (1)
  • Atlantic  (1)
Document type
Keywords
Publisher
Years
  • 1
    Publication Date: 2024-06-27
    Description: Fractional trophic levels (i.e., trophic positions) describe the position of organisms within food webs and help define their functional roles in ecosystems (Odum & Heald, 1975). Trophic positions are thus critical for characterizing species' diets and energy pathways, investigating food web dynamics and ecosystem functioning, and assessing ecosystem health and resilience (Pauly et al., 1998; Pauly & Watson, 2005; Vander Zanden & Fetzer, 2007). We compiled estimates of trophic positions of marine organisms sampled across North Atlantic and Mediterranean waters between 1974 and 2015, gathered from 33 published and unpublished sources. The dataset comprises 208 unique species or genera, including zooplankton, decapods, cephalopods, pelagic and benthic fish, elasmobranchs, marine mammals, marine turtles, seabirds, as well as detritus. Estimates of trophic position were based on the analyses of stomach contents, bulk nitrogen stable isotopes (δ15N values), or amino acid compound-specific nitrogen isotopic analysis. For each data record, we also provided the sampling location, geographic coordinates, month and year of sample collection, method of sample collection, taxonomic ranks (phylum, class, order, family), number and size (or size range) of sampled organisms, type of analyses and estimation method, as well as the reference and DOI of the original data source, for further details on the samples analysed and/or the analytical techniques used.
    Keywords: Analytical method; Azores_comp; Azores-Iberian_Peninsula_comp; Balearic_Sea_comp; Barents_Sea_comp; Bay_of_Biscay_comp; Bay_of_Malaga_comp; Bear_Seamount_comp; Canary_Islands_comp; Cape_Blanc_comp; Cape_Verde_comp; Catalonian_Sea_comp; Cephalopods; Class; Comment; Condor_comp; Crustacea; DEPTH, water; elasmobranchs; Equatorial_comp; Event label; Family; fish; France_comp; Gear; Gulf_of_Lions_comp; Iberian_Peninsula_comp; Institution; Investigator; Jellyfish; LATITUDE; Location; LONGITUDE; marine mammals; marine turtles; Mediterranean_comp; mesopelagic food web; Method comment; Month; Newfoundland_Labrador_comp; North_Sea_comp; North_Water_polynya_comp; Northeast_Atlantic_comp; Number of individuals; Ocean and sea region; Order; Organisms; Persistent Identifier; Phylum; Portugal_comp; Record number; Reference/source; Replicates; salps; Scotland_comp; Seabirds; Size; Spain_comp; Strait_of_Gibraltar_comp; SUMMER; Sustainable Management of Mesopelagic Resources; Taxon/taxa; Taxon/taxa, unique identification (Semantic URI); Taxon/taxa, unique identification (URI); Thracian_Sea_comp; Tissue Descriptor; Trophic level; Trophic level, standard deviation; trophic position; Tyrrhenian_Sea_comp; Wales_comp; Year of observation
    Type: Dataset
    Format: text/tab-separated-values, 15378 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 20113. This is the author's version of the work. It is posted here by permission of Taylor & Francis for personal use, not for redistribution. The definitive version was published in Ethology Ecology & Evolution 26 (2014): 392-404, doi:10.1080/03949370.2013.851122.
    Description: Genetic studies have shown that there are small but significant differences between the short-beaked common dolphin populations in the Atlantic Ocean and those in the Mediterranean Sea. The short-beaked common dolphin is a highly vocal species with a wide sound production repertoire including whistles. Whistles are continuous, narrowband, frequency-modulated signals that can show geographic variation in dolphin species. This study tests whether the differences, highlighted by genetic studies, are recognisable in the acoustic features of short-beaked common dolphin’s whistles in the two adjacent areas of the Atlantic Ocean and the Mediterranean Sea. From a selected sample of good quality whistles (514 recorded in the Atlantic and 193 in the Mediterranean) 10 parameters of duration, frequency and frequency modulation were measured. Comparing data among basins, differences were found for duration and all frequency parameters except for minimum frequency. Modulation parameters showed the highest coefficient of variation. Through discriminant analysis we correctly assigned 75.7% of sounds to their basins. Furthermore, micro-geographic analysis revealed similarity between the sounds recorded around the Azores and the Canary archipelagos and between the Bay of Biscay and the Mediterranean Sea. Results are in agreement with the hypothesis proposed by previous genetic studies that two distinct populations are present, still supposing a gene flow between the basins. This study is the first to compare shortbeaked common dolphin’s whistles of the Atlantic Ocean and the Mediterranean areas.
    Description: Data collection and processing in the Azores was conducted under projects POCTI/BSE/38991/01, PTDC/MAR/74071/2006 and M2.1.2/F/012/2011, supported by FCT (Fundação para a Ciência e a Tecnologia) and DRCTC/SRCTE (Secretaria Regional de Ciência, Tecnologia e Equipamentos), FEDER funds, the Competitiveness Factors Operational (COMPETE), QREN European Social Fund and Proconvergencia Açores Program. We acknowledge funds provided by FCT to LARSyS Associated Laboratory & IMAR-University of the Azores/ the Thematic Area E of the Strategic Project (OE & Compete) and by the DRCTC – Government of the Azores pluriannual funding. M.A. Silva was supported by an FCT postdoctoral grant (SFRH/ BPD/29841/2006). I. Cascão and R. Prieto were supported by FCT doctoral grants (SFRH/BD/ 41192/2007 and SFRH/BD/32520/2006, respectively) and R. Prieto by a research grant from the Azores Regional Fund for Science and Technology (M3.1.5/F/115/2012). Data collection by SECAC (Society for the Study of Cetaceans in the Canary Archipelago) was funded by the U.E. LIFE programme – project LIFE INDEMARES (LIFE 07/NAT/E/000732)- and the Fundación Biodiversidad, under the Spanish Ministry of Environment, Rural and Marine Affairs (project ZEC-TURSIOPS).
    Description: 2014-11-05
    Keywords: Short-beaked common dolphin ; Intra-specific differences ; Geographic variation ; Mediterranean ; Atlantic ; Whistles
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...