GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Analytical Chemistry and Spectroscopy  (3)
  • Ocean circulation  (2)
Document type
Keywords
  • 1
    ISSN: 0030-493X
    Keywords: Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Analytical pyrolysis-atmospberic pressure ionization (Py-API) tandem mass Spectrometry was used in the structure elucidation of the oxidalive and non-oxidative thermal decomposition products of cyclotetramethylenetetranitramine (HMX). The [15NO2]-, [15N8]- and [2H8]-HMX isotope preparations provided fundamental information in the determination of the identities of the various pyrolyzate species. All RDX pyrolysis product ions that were identified by Py-API tandem mass Spectrometry, i.e. m/z 44, 60, 74, 75, 85 and 98, were present in the pyrolyzate of HMX. In both RDX and HMX investigations, these ions provided identical mass spectral daughter ion analyses. HMX, however, provided additional ions at m/z 30, 58, 69, 71, 83 and 141. Of all thirteen ions identified in the Py-APJ mass spectrum of HMX, only that at m/z 75 contained a nitrogen atom that originated from the NO2 group. Standards analysis confirmed the identities of the ions at m/z 69, 71 and 141 as methyleneaminoacetonitrile, methylaminoacetonitrile and the caged compound hoxamethylenetetraamine, respectively. Isotopic analyses provided a high degree of confidence on the structural assignments of the ions at m/z 30 and 58 as methyleneimine and methyleneformamide; the ion at m/z 83, however, appeared to be a heterocyclic compound with daughter ion mass spectral elements similar to but not identical with that of 1-methylimidazole and 3-methylpyrazole.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0030-493X
    Keywords: Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The oxidative pyrolysis-atmospheric-pressure chemical ionization tandem mass Spectrometry (Py-APCI MS/MS) of Cyclotrimethylenetrinitramine (RDX) was investigated under various sample introduction conditions. Subambient (0.97 atm) as opposed to ambient (0.98 atm) pressure (1 atm = 101325 kPa) facilitated the appearance of new pyrolysis mass spectral ions, including m/z 44. Deuterated decomposition products from [2H]RDX contained amide groups and, depending on the ion source pressure, significant differences in the degree of proton-deuterium exchange occurred on the amide groups. The D2O Py-APCI MS/MS method also confirmed and extended the analogous H2O APCI information from RDX, [2H]RDX and pure standards. The m/z 44 decompositon species was identified as protonated dimethylimine, [H3CN=CH2]+ as opposed to its primary amine isomer, [H3CC(H)=NH]H+, which contains an acidic proton. It was determined that m/z 60 is due to protonated N-methylformamide and acetaldoxime, [H3CC(H)=NOH]H+.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0030-493X
    Keywords: Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Pyrolysis-atmospheric pressure chemical ionization was used to study the thermal decomposition of the energetic material cyclotrimethylenetrinitramine (RDX) and characterization of the individual molecular ion products was accomplished by tandem mass spectrometry. The analysis was aided with pyrolysis mass spectra of the (15N)- and perdeuterated RDX isotopes, and molecular formulae were derived for the m/z 46, 60, 74, 75, 85 and 98 molecular ions in the RDX pyrolysis mass spectrum. Equivalent fragments between the daughter ion mass spectra of the unlabeled and labeled RDX were determined in order to define a structure for each pyrolysis feature. Daughter ion mass spectra of pure reference compounds confirmed the identity of five of the six molecular ions. Perdeuterated RDX analyses provided evidence that m/z 74 and 75 are N,N-dimethylformamide and N-nitrosodimethylamine, respectively; m/z 46, 60 and 85 were identified as the protonated forms of formamide, N-methylformamide and dimethylaminoacetonitrile, respectively.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-09-29
    Description: The Filchner‐Ronne Ice Shelf (FRIS) is characterized by moderate basal melt rates due to the near‐freezing waters that dominate the wide southern Weddell Sea continental shelf. We revisited the region in austral summer 2018 with detailed hydrographic and noble gas surveys along FRIS. The FRIS front was characterized by High Salinity Shelf Water (HSSW) in Ronne Depression, Ice Shelf Water (ISW) on its eastern flank, and an inflow of modified Warm Deep Water (mWDW) entering through Central Trough. Filchner Trough was dominated by Ronne HSSW‐sourced ISW, likely forced by a recently intensified circulation beneath FRIS due to enhanced sea ice production in the Ronne polynya since 2015. Glacial meltwater fractions and tracer‐based water mass dating indicate two separate ISW outflow cores, one hugging the Berkner slope after a two‐year travel time, and the other located in the central Filchner Trough following a ∼six year‐long transit through the FRIS cavity. Historical measurements indicate the presence of two distinct modes, in which water masses in Filchner Trough were dominated by either Ronne HSSW‐derived ISW (Ronne‐mode) or more locally derived Berkner‐HSSW (Berkner‐mode). While the dominance of these modes has alternated on interannual time scales, ocean densities in Filchner Trough have remained remarkably stable since the first surveys in 1980. Indeed, geostrophic velocities indicated outflowing ISW‐cores along the trough's western flank and onto Berkner Bank, which suggests that Ronne‐ISW preconditions Berkner‐HSSW production. The negligible density difference between Berkner‐ and Ronne‐mode waters indicates that each contributes cold dense shelf waters to protect FRIS against inflowing mWDW.
    Description: Plain Language Summary: We visited the largest floating Antarctic ice shelf in the southern Weddell Sea in 2018 with an icebreaker expedition, and measured ocean temperature, salinity, meltwater content, and other parameters in front of the FRIS. We found that the ocean conditions were still dominated by the very cold and dense waters needed to protect the ice shelf from inflowing warm waters from the deep ocean. We compared the 2018 conditions with earlier surveys since the 1980s and concluded that, in spite of climate change and in contrast to other Antarctic regions, the water masses on the southern Weddell Sea shelf remained relatively stable overall. We found that most of the stations we visited near the Filchner Ice Shelf edge were dominated by cold ISW, which forms when water masses interact with the underside of the shelf ice. Our measurements helped improve our understanding regarding the currents and water masses on the southern Weddell Sea continental shelf.
    Description: Key Points: Hydrographic status update with the first comprehensive CTD survey along the entire FRIS front since 1995. Strong and stable presence of High Salinity Shelf Water in Ronne Depression over decades. Dominance of Ronne‐sourced Ice Shelf Water in Filchner Trough in 2018 points to intensified sub‐FRIS circulation.
    Description: Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI) http://dx.doi.org/10.13039/501100003207
    Keywords: 551.46 ; Ocean circulation ; ocean‐ice shelf interaction ; water masses ; Weddell Sea ; Filcher and Ronne shelves
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Janout, M. A., Hellmer, H. H., Hattermann, T., Huhn, O., Sueltenfuss, J., Osterhus, S., Stulic, L., Ryan, S., Schroeder, M., & Kanzow, T. FRIS revisited in 2018: on the circulation and water masses at the Filchner and Ronne Ice Shelves in the Southern Weddell Sea. Journal of Geophysical Research: Oceans, 126(6), (2021): e2021JC017269, https://doi.org/10.1029/2021JC017269.
    Description: The Filchner-Ronne Ice Shelf (FRIS) is characterized by moderate basal melt rates due to the near-freezing waters that dominate the wide southern Weddell Sea continental shelf. We revisited the region in austral summer 2018 with detailed hydrographic and noble gas surveys along FRIS. The FRIS front was characterized by High Salinity Shelf Water (HSSW) in Ronne Depression, Ice Shelf Water (ISW) on its eastern flank, and an inflow of modified Warm Deep Water (mWDW) entering through Central Trough. Filchner Trough was dominated by Ronne HSSW-sourced ISW, likely forced by a recently intensified circulation beneath FRIS due to enhanced sea ice production in the Ronne polynya since 2015. Glacial meltwater fractions and tracer-based water mass dating indicate two separate ISW outflow cores, one hugging the Berkner slope after a two-year travel time, and the other located in the central Filchner Trough following a ∼six year-long transit through the FRIS cavity. Historical measurements indicate the presence of two distinct modes, in which water masses in Filchner Trough were dominated by either Ronne HSSW-derived ISW (Ronne-mode) or more locally derived Berkner-HSSW (Berkner-mode). While the dominance of these modes has alternated on interannual time scales, ocean densities in Filchner Trough have remained remarkably stable since the first surveys in 1980. Indeed, geostrophic velocities indicated outflowing ISW-cores along the trough's western flank and onto Berkner Bank, which suggests that Ronne-ISW preconditions Berkner-HSSW production. The negligible density difference between Berkner- and Ronne-mode waters indicates that each contributes cold dense shelf waters to protect FRIS against inflowing mWDW.
    Description: This study used samples and data provided by the Alfred Wegener Institute Helmholtz-Center for Polar- and Marine Research in Bremerhaven (Grant No. AWI-PS111_01). The authors thank Captain Schwarze and the crew of RV Polarstern for a very successful expedition. We acknowledge support from the EU Horizon 2020 grants 820575 (HHH, SØ) and 821001 (TK, SØ).
    Keywords: Ocean circulation ; Ocean-ice shelf interaction ; Water masses ; Weddell Sea ; Filcher and Ronne shelves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...