GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    Online Resource
    Online Resource
    Newark :American Geophysical Union,
    Keywords: Climatic changes--Antarctica. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (225 pages)
    Edition: 1st ed.
    ISBN: 9781118671672
    Series Statement: Special Publications ; v.63
    DDC: 559.89
    Language: English
    Note: Intro -- Title Page -- Contents -- Preface -- Introduction -- A Different Look at Gateways: Drake Passage and Australia/Antarctica -- Exhumational History of the Margins of Drake Passage From Thermochronology and Sediment Provenance -- Seismic Stratigraphy of the Joinville Plateau: Implications for Regional Climate Evolution -- Age Assessment of Eocene-Pliocene Drill Cores Recovered During the SHALDRIL II Expedition, Antarctic Peninsula -- Magnetic Properties of Oligocene-Eocene Cores From SHALDRIL II, Antarctica -- History of an Evolving Ice Sheet as Recorded in SHALDRIL Cores From the Northwestern Weddell Sea, Antarctica -- Cenozoic Glacial History of the Northern Antarctic Peninsula: A Micromorphological Investigation of Quartz Sand Grains -- Last Remnants of Cenozoic Vegetation and Organic-Walled Phytoplankton in the Antarctic Peninsula's Icehouse World -- Vegetation and Organic-Walled Phytoplankton at the End of the Antarctic Greenhouse World: Latest Eocene Cooling Events -- AGU Category Index -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-14
    Description: The sensitivity of sea level to melting from polar ice sheets and glaciers during recent natural and anthropogenic climate fluctuations is poorly constrained beyond the period of direct observation by satellite. We have investigated glacial meltwater events during the Anthropocene by adapting the pioneering approach of modeling trends in d18O in the pore waters of deep‐sea cores, previously used to constrain the size of ice sheets during the Last Glacial Maximum. We show that during recent warm periods, meltwater from glacier retreat drains into the coastal fjords, leaving a signature of depleted d18O values and low Cl concentrations in the pore water profiles of rapidly accumulating sediments. Here we model such pore water profiles in a piston core to constrain the timing and magnitude of an ice sheet retreat event at Caley Glacier on the west Antarctic Peninsula, and the result is compared with local ice front movement. This approach of pore water modeling was then applied in another kasten core and tested by a series of sensitivity analyses. The results suggest that our approach may be applied in fjords of different sedimentary settings to reconstruct the glacier history and allow insight into the sensitivity of polar glaciers to abrupt warming events.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-08-12
    Description: It is becoming increasingly apparent that bathymetry plays a crucial role in determining the behavior of marine-terminating glaciers. This is because variations in the shape of the bed can produce both pinning points where glaciers (or their floating tongues) can ground and stabilize, as well as pathways for warm waters to move across the shelf and access the grounding line. Ahead of the first ITGC field season we present the existing state of knowledge about the bed in front of Thwaites Glacier (TG). We have compiled existing multibeam-bathymetric datasets from the UK, the USA and international partners (Korea, Germany) to produce a high-resolution grid (50-m cells) for the area. From this grid we identify possible pathways for warm Circumpolar Deep Water to the TG grounding line, a topographic high – as shallow as 130 m in places - that likely acted as a pinning point and is less than 18 km from the current eastern ice-shelf margin, and landforms indicative of the past behavior of the glacier (e.g. meltwater channels and basins, streamlined landforms). This exercise also highlights important data gaps to target for surveying in 2019, including for example, the area left vacant by the calving of the B-22 iceberg. Secondly, we explore existing sub-bottom and seismic-reflection profiles from the Amundsen Sea Embayment to investigate the nature of the substrate in front of TG. Unlithified sediment cover is generally thin (〈5 m) over scoured crystalline bedrock but thickens to up to 40 m in basins. We discuss potential coring targets close to pathways for warm water incursions, and former stability points including the possibility of unknown basins in front of TG.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-09-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-30
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  EPIC3EGU General Assembly, Vienna, 2019-04-07-2019-04-12
    Publication Date: 2019-06-30
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  EPIC3XIII International Symposium on Antarctic Earth Sciences (ISAES), Incheon, South Korea, 2019-07-22-2019-07-26
    Publication Date: 2019-06-30
    Description: The Amundsen Sea sector of Antarctica has long been considered the most vulnerable part of the West Antarctic Ice Sheet (WAIS) because of the great water depth at the grounding line, incursion of warm Circumpolar Deep Water, and the lack of substantial buttressing ice shelves. Ice flowing into the Amundsen Sea embayment is currently undergoing the most rapid changes of any sector of the Antarctic ice sheets, including substantial grounding line retreat over recent decades as observed from satellite data. Recent models suggest that a threshold leading to collapse of WAIS in this sector may have been passed already and that much of the WAIS could be lost even under relatively moderate greenhouse gas emission scenarios. Drill cores from the Amundsen Sea provide tests of several key questions about controls on ice sheet stability. Since the Amundsen Sea drainage basin currently has the largest negative mass balance of ice of anywhere in Antarctica, geological tests of ice-sheet stability in this region are thus of prime interest to future predictions. IODP Expedition 379 successfully drilled two sites on the continental rise of the Amundsen Sea in January-March 2019, despite operational difficulties. Site U1532 is located on a large sediment drift and penetrated to a depth of 794 mbsf with 90% core recovery. Nearly continuous cores were collected from the Pleistocene down through an expanded Pliocene–uppermost Miocene sequence. Site U1533 was drilled to a depth of 383 mbsf (70% core recovery) into a more condensed sequence down to the upper Miocene on the lowermost flank of the same sediment drift, recovering a complete Pleistocene–uppermost Pliocene composite section and a correlative, but more condensed, Pliocene section to that recovered at Site U1532. The cores of both sites contain unique records to study the cyclicity of ice sheet advance and retreat processes as well as ocean-bottom circulation and water mass changes. In particular, Site U1532 revealed distinct cyclic Pliocene lithofacies alternations with an excellent paleomagnetic record, which will be suitable for high-resolution, sub-orbital scale climate change studies of the previously sparsely sampled Pacific sector of the West Antarctic margin. Coarse-grained sediments, interpreted as ice-rafted debris (IRD), were identified throughout all time periods recovered. Cyclicity interpreted to represent relatively warmer periods, variably characterized by higher microfossil abundance and higher counts of IRD, alternating with colder periods, characterized by dominantly gray laminated terrigenous muds, is a dominant feature of the cores. Initial comparison of these cycles to published records from the region suggests that those units interpreted as recording warmer time intervals in the core relate to interglacial periods and those units interpreted as being deposited during colder periods tie to glacial periods. The association of lithological facies at both sites predominantly reflects the interplay of downslope and contouritic sediment transport with phases of relatively more pelagic sediment input. Despite the lack of drill cores from the shelf, our records from the continental rise reveal the timing of glacial advances onto the shelf and, thus, the expansion of a continent-wide ice sheet in West Antarctica at least back to the late Miocene.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-01-15
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-01-15
    Description: The Amundsen Sea sector of Antarctica has long been considered the most vulnerable part of the West Antarctic Ice Sheet because of the great water depth and retrograde slope at the grounding line, the observed incursion of warm Circumpolar Deep Water onto the shelf, and the lack of substantial buttressing ice shelves. Notably, ice flowing into the Amundsen Sea embayment has been undergoing rapid changes over recent decades. International Ocean Discovery Program (IODP) Expedition 379 accomplished two successful drill sites on the continental rise of the Amundsen Sea in January-March 2019, the first from this sector, despite significant logistical limitations, including persistent sea ice that prevented access to all proposed continental shelf sites and abundant mobile icebergs that forced loss of ~50% of drilling time. Site U1532 is located on a large sediment drift and penetrated to a depth of 794 m below seafloor with 90% recovery. Nearly continuous cores were collected from the Pleistocene into the upper Miocene. Site U1533 reached 383 m below seafloor (70% core recovery) in a more condensed sequence down to the upper Miocene at the lowermost flank of the same sediment drift. The cores from both sites contain unique records to study the cyclicity of ice sheet advance and retreat processes as well as ocean-bottom circulation and water mass changes. In particular, Site U1532 revealed a sequence of Pliocene lithofacies, with an excellent paleomagnetic record for very high-resolution, sub-orbital scale climate change studies of the previously sparsely sampled region. Coarse-grained sediments, interpreted as ice-rafted debris, were identified throughout all time periods recovered. Proximal sources in West Antarctica are confirmed for crystalline rock detritus in some intervals. Cyclicity interpreted to represent relatively warmer periods, variably characterized by higher microfossil abundance and higher counts of ice-rafted debris, alternating with transitional and colder periods, characterized by dominantly gray laminated terrigenous muds, is a dominant feature of the cores. Despite the lack of sites on the shelf, the records from the continental rise reveal the timing of glacial advances onto the shelf and, thus, the expansion of a continent-wide ice sheet in West Antarctica at least back to the Late Miocene.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-05-05
    Description: The coastal bathymetry of Thwaites Glacier (TG) is poorly known yet nearshore sea-floor highs have the potential to act as pinning points for floating ice shelves, or to block warm water incursions to the grounding line. In contrast, deeper areas control warm water routing. Here, we present more than 2000 km2 of new multibeam echo-sounder data (MBES) acquired offshore TG during the first cruise of the International Thwaites Glacier Collaboration (ITGC) project on the RV/IB Nathaniel B. Palmer (NBP19-02) in February-March 2019. Beyond TG, the bathymetry is dominated by a 〉1200 m deep, structurally-controlled trough and discontinuous ridge, on which the Eastern Ice Shelf is pinned. The geometry and composition of the ridge varies spatially with some sea-floor highs having distinctive flat-topped morphologies produced as their tops were planed-off by erosion at the base of the seaward-moving Thwaites Ice Shelf. In addition, submarine landform evidence indicates at least some unconsolidated sediment cover on the highs, as well as in the troughs that separate them. Knowing that this offshore area of ridges and troughs is a former bed for TG, we also used a novel spectral approach and existing ice-flow theory to investigate bed roughness and basal drag over the newly-revealed offshore topography. We show that the sea-floor bathymetry is a good analogue for extant bed areas of TG and that ice-sheet retreat over the sea-floor troughs and ridges would have been affected by high basal drag similar to that acting in the grounding zone today. Comparisons of the new MBES data with existing regional compilations show that high-frequency (finer than 5 km) bathymetric variability beyond Antarctic ice shelves can only be resolved by observations such as MBES and that without these data calculations of the oceanic heat flux may be significantly underestimated. This work supports the findings of recent numerical ice-sheet and ocean modelling studies that recognise the need for accurate and high-resolution bathymetry to determine warm water routing to the grounding zone and, ultimately, for predicting glacier retreat behaviour.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...