GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ammonium; Benguela Upwelling System; BUSUC 1; Continuous Segmented Flow Analyzer, SEAL Analytical, QuAAtro39; CTD, Sea-Bird SBE 911plus; CTD/Rosette; CTD-RO; DATE/TIME; DEPTH, water; Event label; Field observation; LATITUDE; LONGITUDE; M157; M157_10-7; M157_11-4; M157_12-2; M157_14-2; M157_16-25; M157_16-3; M157_16-6; M157_17-16; M157_17-2; M157_24-1; M157_25-1; M157_2-8; M157_28-1; M157_2-9; M157_36-2; M157_41-14; M157_42-2; M157_43-2; M157_43-6; M157_9-2; Meteor (1986); Microstructure profiler, Sea & Sun Technology, MSS90L; Namibia; Nitrate; Nitrite; nutrients; Oxygen; oxygen minimum zone; PCTD-RO; Phosphate; PumpCTD/Rosette; Salinity; Sample code/label; Silicate; Station label; Temperature, water; Water mass; water mass fraction  (1)
  • Hochschulschrift  (1)
  • Microinjection  (1)
Document type
Keywords
Publisher
Language
Years
  • 1
    Keywords: Hochschulschrift ; Phytoplankton ; Klimaänderung
    Description / Table of Contents: Global warming has already and is continuing to impact the global oceans. Half of the global primary production is performed by phytoplankton in the oceans and heterotrophic marine bacteria channel a substantial amount of primary organic carbon through the microbial loop. Understanding the influence of climate change on these important processes is therefore essential for an assessment of the vulnerability of the carbon cycle and possible feedbacks. This thesis reports results from investigations on the temperature dependent coupling between phytoplankton and bacterioplankton, with respect to additional effects of light intensity and inorganic nutrient concentrations. During four consecutive years, mesocosm experiments with natural Kiel Fjord winter plankton communities investigated the influences of increasing water temperatures of up to ?T +6ʿC and different light intensities between 16 and 100% of natural incident light. In an additional microcosm experiment with a single algal species and the natural bacterial community, two inorganic nutrient concentrations were used, in order to evaluate the combined effects of temperature and substrate on the algal-bacterial coupling. Summarising the results from all experiments it can be concluded, that increasing temperatures generally led to an increased heterotrophic bacterial organic substrate utilisation relative to primary production. In combination with a further brightening, the supplemental promotion of primary production would increase the absolute amounts of cycled organic matter. Future increasing P-limitation in coastal waters would lead not only to an enhanced absolute amount of cycled carbon, but additionally to an increased relative amount of remineralised organic carbon through the microbial loop. An enhanced organic matter transfer through the microbial loop has the potential to alter the whole structure and functioning of the marine food web and the biological sequestration of carbon to depth. Additionally, a substantial rise of CO2 emissions through enhanced respiration represents a positive feedback loop to the global climate change problem.
    Type of Medium: Online Resource
    Pages: Online-Ressource (pdf-Datei: 199 S., 1,7 MB)
    DDC: 578.77622
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Diffusion coefficient ; Muscle cells ; Myoglobin ; Microinjection ; Oxygen ; Facilitated diffusion ; Intracellular oxygen transport ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We measured the diffusion coefficient of myoglobin (D Mb) inside mammalian skeletal muscle cells with a microinjection technique. A small bolus of horse Mb was injected into a single muscle fibre and the subsequent time-dependent changes of the Mb profiles along the fibre axis were measured with a microscope-photometer. For fibres of the rat soleus muscle at 22° C, a D Mb of 1.3·10−7 cm2/s was found, confirming a result obtained previously by us for rat diaphragm muscle with a photo-oxidation technique. In the extensor digitorum longus muscle of the rat, a higher value of 1.9 · 10−7 cm2/s was measured. Auxotonic muscle contractions did not change the apparent D Mb. For the temperature range between 22 ° C and 37 ° C, a temperature coefficient, Q 10, of 1.5 was calculated. The implication of this result for the role of Mb in the facilitation of oxygen transport was examined. Model calculations show that with this relatively low D Mb value, the intracellular oxygen supply can be improved only slightly.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-22
    Description: Upwelling systems are significant sources of atmospheric nitrous oxide (N₂O). The Benguela Upwelling System is one of the most productive regions worldwide and a temporally variable source of N₂O. Strong O₂ depletions above the shelf are favoring periodically OMZ formations. We aimed to assess underlying N₂O production and consumption processes on different temporal and spatial scales during austral winter in the Benguela Upwelling System, when O₂-deficiency in the water column is relatively low. The fieldwork took place during the cruise M157 (August 4ᵗʰ – September 16ᵗʰ 2019) onboard the R/V METEOR. This expedition included four close-coastal regions around Walvis Bay at 23°S, which presented the lowest O₂ concentrations near the seafloor and thus may provide hotspots of N₂O production. Seawater was collected in 10 L free-flow bottles by using a rosette system equipped with conductivity-temperature-depth (CTD) sensors (SBE 911plus, Seabird-electronics, USA). Concentrations of inorganic nutrients (PO₄³⁻, NH₄⁺, NO₃⁻, NO₂⁻, and SiO₂) were measured colorimetrically according to Grasshoff et al. (1999) by means of a continuous segmented flow analyzer (SEAL Analytical, QuAAtro39). To determine the water mass fractions along the sampling transects, vertical profiles were collected using a free-falling microstructure profiler (MSS90L, Sea & Sun Technology). Temperature, dissolved oxygen, and salinity were measured with a CTD system consisting of a SeaBird 911+ probe, mounted on a sampling rosette.
    Keywords: Ammonium; Benguela Upwelling System; BUSUC 1; Continuous Segmented Flow Analyzer, SEAL Analytical, QuAAtro39; CTD, Sea-Bird SBE 911plus; CTD/Rosette; CTD-RO; DATE/TIME; DEPTH, water; Event label; Field observation; LATITUDE; LONGITUDE; M157; M157_10-7; M157_11-4; M157_12-2; M157_14-2; M157_16-25; M157_16-3; M157_16-6; M157_17-16; M157_17-2; M157_24-1; M157_25-1; M157_2-8; M157_28-1; M157_2-9; M157_36-2; M157_41-14; M157_42-2; M157_43-2; M157_43-6; M157_9-2; Meteor (1986); Microstructure profiler, Sea & Sun Technology, MSS90L; Namibia; Nitrate; Nitrite; nutrients; Oxygen; oxygen minimum zone; PCTD-RO; Phosphate; PumpCTD/Rosette; Salinity; Sample code/label; Silicate; Station label; Temperature, water; Water mass; water mass fraction
    Type: Dataset
    Format: text/tab-separated-values, 1660 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...