GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Amino acids 7 (1994), S. 267-278 
    ISSN: 1438-2199
    Keywords: Amino acids ; Protein synthesis ; tRNA charging ; Amino acid metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Specific radioactivity in three amino acid compartments was examined in broiler chicks following a flooding dose of leucine or phenylalanine. In general, specific radioactivity of leucine and phenylalanine in deproteinated plasma (SAe) and tissue (SAi) compartments, exceeded that in acylated-tRNA (SAt). In most tissues, SAe and SAi rapidly reached a similar peak level by 5 min followed by a slow decline for the next 30 minutes. Many tissues (eg. GI tract, liver, skin, and thigh) failed to maintain equilibrium between SAe and SAi over time. More metabolically active tissues, such as GI and liver had the greatest differences between these compartments. The difference between SAe and SAi for both leucine and phenylalanine were due to SAi decreasing faster than SAe, indicating dilution with unlabelled amino acids from proteolysis. Plasma and tissue specific radioactivity overestimated tRNA specific radioactivity by as much as 5 and 2.8 fold using leucine or 2.7 and 1.4 fold using phenylalanine, respectively. These data suggest that intracellular compartmentation of protein metabolism and the coupling of protein degradation and synthesis occur, in vivo.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1920
    Keywords: NMR imaging ; Optic nerve ; Chemical shift artefact ; Contrast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Orbital fat surrounding the optic nerve causes considerable difficulties in NMR imaging due to its high image intensity and the chemical shift artefact. We have investigated the ability of inversion recovery seqeunces with short inversion times (STIR sequences) to suppress fat signals in imaging the optic nerve. We have also compared the contrast attainable with STIR sequences with that obtainable from other sequences. Measurements were made on 4 normal controls and 5 patients with multiple sclerosis (MS) to obtain typical values of relaxation times and proton densities for orbital fat, cerebral white matter and MS lesions. The fat T1 measurements were used to predict an appropriate inversion time for the STIR sequence and estimate how much residual fat signal might be expected as a result of natural variations in fat T1. STIR sequences can be used to suppress the signal from orbital fat with little residual signal. Measurements from white matter and MS lesions were used to predict the contrast between normal and pathological tissues that is attainable with STIR sequences. STIR contrast compares favourably with that obtainable from other sequences.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...