GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chromista; Emiliania huxleyi; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Haptophyta; Immunology/Self-protection; Laboratory experiment; Laboratory strains; Mesocosm or benthocosm; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phenolics, all; Phenolics, all, per individual; Phytoplankton; Potentiometric; Registration number of species; Replicate; Respiration; Respiration rate, oxygen, per cell; Salinity; Single species; Species; Temperature, water; Treatment; Type; Uniform resource locator/link to reference; Wuyuan_Bay  (1)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Jin, Peng; Wang, Tifeng; Liu, Nana; Dupont, Sam; Beardall, John; Boyd, Philip W; Riebesell, Ulf; Gao, Kunshan (2015): Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels. Nature Communications, 6, 8714, https://doi.org/10.1038/ncomms9714
    Publication Date: 2024-03-15
    Description: Increasing atmospheric CO2 concentrations are causing ocean acidification (OA), altering carbonate chemistry with consequences for marine organisms. Here we show that OA increases by 46-212% the production of phenolic compounds in phytoplankton grown under the elevated CO2 concentrations projected for the end of this century, compared with the ambient CO2 level. At the same time, mitochondrial respiration rate is enhanced under elevated CO2 concentrations by 130-160% in a single species or mixed phytoplankton assemblage. When fed with phytoplankton cells grown under OA, zooplankton assemblages have significantly higher phenolic compound content, by about 28-48%. The functional consequences of the increased accumulation of toxic phenolic compounds in primary and secondary producers have the potential to have profound consequences for marine ecosystem and seafood quality, with the possibility that fishery industries could be influenced as a result of progressive ocean changes.
    Keywords: Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chromista; Emiliania huxleyi; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Haptophyta; Immunology/Self-protection; Laboratory experiment; Laboratory strains; Mesocosm or benthocosm; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phenolics, all; Phenolics, all, per individual; Phytoplankton; Potentiometric; Registration number of species; Replicate; Respiration; Respiration rate, oxygen, per cell; Salinity; Single species; Species; Temperature, water; Treatment; Type; Uniform resource locator/link to reference; Wuyuan_Bay
    Type: Dataset
    Format: text/tab-separated-values, 1434 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...