GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alkalinity, total; Animalia; Aragonite saturation state; Ash free dry mass; Benthic animals; Benthos; Bicarbonate ion; BIOACID; Calcification/Dissolution; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Coral polyp; Dissolution rate; Dry mass; Experimental treatment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Group; Growth/Morphology; Interval; JAGO; Laboratory experiment; Lophelia pertusa; Morphotype; Mortality; Mortality/Survival; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; POS455; POS455_836-2; Poseidon; Replicate; Respiration; Respiration rate, oxygen; Salinity; Single species; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Submersible JAGO; Temperate; Temperature; Temperature, water; Treatment; Type  (1)
  • BIOACID; Bioerosion; Biological Impacts of Ocean Acidification; Calcification/Dissolution; cold-water coral; Deep Atlantic; global warming; Metabolic rate; Ocean acidification  (1)
Document type
Keywords
Publisher
Years
  • 1
    Publication Date: 2023-12-14
    Description: In a 13-months laboratory experiment conducted in 2014/2015, the interactive effects of gradually increasing temperature and pCO2 levels on survival, growth and respiration of two prominent colour morphotypes (white and orange) of the framework-forming cold-water coral Lophelia pertusa (also known as Desmophyllum pertusum), as well as bioerosion and dissolution of dead coral framework were assessed. In six-week intervals, three treatments (T1: acidification, T2: warming, T3: combined acidification and warming) were gradually increased in their respective manipulated parameters by 1°C and/or 200 µatm pCO2 after an initial two intervals under ambient (near in-situ) conditions. Each treatment consisted of 7 replicates that were manipulated over the course of the experiment and 3 control replicates that remained at ambient conditions throughout the entire duration of the experiment. Each replicate tank consisted of one live coral fragment of the white morphotype, one fragment of the orange morphotype and one dead framework fragment (naturally bioeroded framework material). Dead framework was examined with regard to attached bioeroders and calcifying organisms, the latter being removed prior to the experiment. All coral samples were collected from an inshore Norwegian cold-water coral habitat in the outer Trondheim-Fjord near Nord-Leksa (63°36.4'N, 09°22.7'E) between 150 to 230 m water depth using the manned submersible JAGO (GEOMAR, 2017; doi:10.17815/jlsrf-3-157) during RV POSEIDON (GEOMAR, 2015; doi:10.17815/jlsrf-1-62) cruise POS455 in June/July 2013. In situ conditions at the time of sampling near the corals were 7.7°C in temperature, 35.2 in salinity and ~6 mL/L oxygen concentration. Prior to the experiment, corals were kept in a closed recirculating system of 1,700 L in a climate-controlled laboratory facility at GEOMAR in Kiel at near in situ conditions of temperature and salinity (7.8 145 ± 0.2 °C and 35.8 ± 0.6) for half a year. Calcification/dissolution rates of live corals and bioerosion/dissolution rates of dead coral framework were determined using the buoyant weighing technique (Davies, 1989; doi:10.1007/BF00428135) with a high precision analytical balance (Sartorius CPA225D, readability = 0.1 mg) placed above every individual aquarium for each measurement. Respiration rates were determined via oxygen consumption measurements using an optode-based oxygen analyser (Oxy-10 mini, PreSens GmbH). Mortality was examined during every six-week interval by visual inspection of all live fragments. Dead polyp counts were calculated as percentage of total polyps counts of every individual fragment. Carbonate system parameters were calculated from the two measured parameters total alkalinity (TA) and dissolved inorganic carbon (DIC). TA and DIC samples were taken at the end of every 6-week interval and analyzed via potentiometric open-cell titration (862 Compact Titrosampler, Metrohm) in case of TA and by infrared detection of CO2 using an Automated Infra-Red Inorganic Carbon Analyzer (AIRICA with LI-COR 7000, Marianda) in case of DIC. TA and DIC were corrected against Certified Reference Material from A.G. Dickson (Scripps Institution of Oceanography) and density-corrected. The purpose of this study was to examine thresholds and optima of live corals under gradual increases of ocean acidification and warming and to quantify dissolution and bioerosion rates of dead coral framework to ultimately assess the balance between live coral calcification and degradation of dead coral framework under future ocean conditions.
    Keywords: BIOACID; Bioerosion; Biological Impacts of Ocean Acidification; Calcification/Dissolution; cold-water coral; Deep Atlantic; global warming; Metabolic rate; Ocean acidification
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-15
    Description: Physiological sensitivity of cold-water corals to ocean change is far less understood than of tropical corals and very little is known about the impacts of ocean acidification and warming on degradative processes of dead coral framework. In a 13-month laboratory experiment, we examined the interactive effects of gradually increasing temperature and pCO2 levels on survival, growth, and respiration of two prominent color morphotypes (colormorphs) of the framework-forming cold-water coral Lophelia pertusa, as well as bioerosion and dissolution of dead framework. Calcification rates tended to increase with warming, showing temperature optima at ~ 14°C (white colormorph) and 10–12°C (orange colormorph) and decreased with increasing pCO2. Net dissolution occurred at aragonite undersaturation (ΩAr 〈 1) at ~ 1000 μatm pCO2. Under combined warming and acidification, the negative effects of acidification on growth were initially mitigated, but at ~ 1600 μatm dissolution prevailed. Respiration rates increased with warming, more strongly in orange corals, while acidification slightly suppressed respiration. Calcification and respiration rates as well as polyp mortality were consistently higher in orange corals. Mortality increased considerably at 14–15°C in both colormorphs. Bioerosion/dissolution of dead framework was not affected by warming alone but was significantly enhanced by acidification. While live corals may cope with intermediate levels of elevated pCO2 and temperature, long-term impacts beyond levels projected for the end of this century will likely lead to skeletal dissolution and increased mortality. Our findings further suggest that acidification causes accelerated degradation of dead framework even at aragonite saturated conditions, which will eventually compromise the structural integrity of cold-water coral reefs.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Ash free dry mass; Benthic animals; Benthos; Bicarbonate ion; BIOACID; Calcification/Dissolution; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Coral polyp; Dissolution rate; Dry mass; Experimental treatment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Group; Growth/Morphology; Interval; JAGO; Laboratory experiment; Lophelia pertusa; Morphotype; Mortality; Mortality/Survival; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; POS455; POS455_836-2; Poseidon; Replicate; Respiration; Respiration rate, oxygen; Salinity; Single species; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Submersible JAGO; Temperate; Temperature; Temperature, water; Treatment; Type
    Type: Dataset
    Format: text/tab-separated-values, 21772 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...