GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcification rate, standard deviation; Calcification rate of carbon per cell; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell size; Cell size, standard deviation; Chromista; Effective photochemical quantum yield; Effective photochemical quantum yield, standard deviation; Electron transport rate, relative; Electron transport rate, relative, standard deviation; Emiliania huxleyi; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard deviation; Haptophyta; Irradiance; Laboratory experiment; Laboratory strains; Maximum photochemical quantum yield of photosystem II; Maximum photochemical quantum yield of photosystem II, standard deviation; Net photosynthesis rate, per cell; Net photosynthesis rate, standard deviation; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Other; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Photosynthesis rate, carbon, per cell; Phytoplankton; Primary production/Photosynthesis; Registration number of species; Salinity; Single species; Species; Temperature, water; Time in hours; Treatment; Type; Uniform resource locator/link to reference  (1)
  • Alkalinity, total; Alkalinity, total, standard error; Aragonite saturation state; Behaviour; Bicarbonate ion; Bicarbonate ion, standard error; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calcium, flux; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard error; Carbonate ion; Carbonate ion, standard error; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard error; Chlamydomonas reinhardtii; Chlorophyta; Daily vertical migration; Dunaliella salina; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gene expression; Gene name; Irradiance; Laboratory experiment; Laboratory strains; Microglena sp.; Move velocity; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Oxygen evolution, per chlorophyll a; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; Pelagos; Percentage; pH; pH, standard error; Phytoplankton; Plantae; Potentiometric; Potentiometric titration; Registration number of species; Respiration; Salinity; Single species; Species; Temperature, water; Time in days; Type; Uniform resource locator/link to reference  (1)
Document type
Keywords
Publisher
Years
  • 1
    Publication Date: 2024-03-15
    Description: The carbonate chemistry in coastal waters is more variable compared with that of open oceans, both in magnitude and time scale of its fluctuations. However, knowledge of the responses of coastal phytoplankton to dynamic changes in pH/pCO2 has been scarcely documented. Hence, we investigated the physiological performance of a coastal isolate of the coccolithophore Emiliania huxleyi (PML B92/11) under fluctuating and stable pCO2 regimes (steady ambient pCO2, 400 μatm; steady elevated pCO2, 1200 μatm; diurnally fluctuating elevated pCO2, 600–1800 μatm). Elevated pCO2 inhibited the calcification rate in both the steady and fluctuating regimes. However, higher specific growth rates and lower ratios of calcification to photosynthesis were detected in the cells grown under diurnally fluctuating elevated pCO2 conditions. The fluctuating pCO2 regime alleviated the negative effects of elevated pCO2 on effective photochemical quantum yield and relative photosynthetic electron transport rate compared with the steady elevated pCO2 treatment. Our results suggest that growth of E. huxleyi could benefit from diel fluctuations of pH/pCO2 under future-projected ocean acidification, but its calcification was reduced by the fluctuation and the increased concentration of CO2, reflecting a necessity to consider the influences of dynamic pH fluctuations on coastal carbon cycles associated with ocean global changes.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcification rate, standard deviation; Calcification rate of carbon per cell; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell size; Cell size, standard deviation; Chromista; Effective photochemical quantum yield; Effective photochemical quantum yield, standard deviation; Electron transport rate, relative; Electron transport rate, relative, standard deviation; Emiliania huxleyi; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard deviation; Haptophyta; Irradiance; Laboratory experiment; Laboratory strains; Maximum photochemical quantum yield of photosystem II; Maximum photochemical quantum yield of photosystem II, standard deviation; Net photosynthesis rate, per cell; Net photosynthesis rate, standard deviation; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Other; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Photosynthesis rate, carbon, per cell; Phytoplankton; Primary production/Photosynthesis; Registration number of species; Salinity; Single species; Species; Temperature, water; Time in hours; Treatment; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 2758 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-15
    Description: Motility plays a critical role in algal survival and reproduction, with implications for aquatic ecosystem stability. However, the effect of elevated CO2 on marine, brackish and freshwater algal motility is unclear. Here we show, using laboratory microscale and field mesoscale experiments, that three typical phytoplankton species had decreased motility with increased CO2. Polar marine Microglena sp., euryhaline Dunaliella salina and freshwater Chlamydomonas reinhardtii were grown under different CO2 concentrations for 5 years. Long-term acclimated Microglena sp. showed substantially decreased photo-responses in all treatments, with a photophobic reaction affecting intracellular calcium concentration. Genes regulating flagellar movement were significantly downregulated (P 〈 0.05), alongside a significant increase in gene expression for flagellar shedding (P 〈 0.05). D. salina and C. reinhardtii showed similar results, suggesting that motility changes are common across flagellated species. As the flagella structure and bending mechanism are conserved from unicellular organisms to vertebrates, these results suggest that increasing surface water CO2 concentrations may affect flagellated cells from algae to fish.
    Keywords: Alkalinity, total; Alkalinity, total, standard error; Aragonite saturation state; Behaviour; Bicarbonate ion; Bicarbonate ion, standard error; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calcium, flux; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard error; Carbonate ion; Carbonate ion, standard error; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard error; Chlamydomonas reinhardtii; Chlorophyta; Daily vertical migration; Dunaliella salina; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gene expression; Gene name; Irradiance; Laboratory experiment; Laboratory strains; Microglena sp.; Move velocity; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Oxygen evolution, per chlorophyll a; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; Pelagos; Percentage; pH; pH, standard error; Phytoplankton; Plantae; Potentiometric; Potentiometric titration; Registration number of species; Respiration; Salinity; Single species; Species; Temperature, water; Time in days; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 124767 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...