GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Chlorophyll a; Chlorophyll a, standard deviation; Chlorophyll b; Chlorophyll b, standard deviation; Chlorophyta; Coast and continental shelf; Day of experiment; Electron transport rate, relative; Electron transport rate, relative, standard deviation; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard deviation; Laboratory experiment; Length; Length, standard deviation; Lianyungang_OA; Macroalgae; Macro-nutrients; Net photosynthesis rate, oxygen; Net photosynthesis rate, standard deviation; Nitrate reductase activity; Nitrate reductase activity, standard deviation; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Plantae; Primary production/Photosynthesis; Proteins, soluble; Proteins, standard deviation; Registration number of species; Respiration; Respiration rate, oxygen, dark; Respiration rate, oxygen, standard deviation; Salinity; Single species; Species; Temperate; Temperature, water; Treatment; Type; Ulva linza; Uniform resource locator/link to reference  (1)
  • Alkalinity, total; Aragonite saturation state; Bacteria; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon/Nitrogen ratio; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chlorophyll a per cell; Contribution; Cyanobacteria; Effective quantum yield; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Functional absorption cross sections of photosystem II reaction centers; Growth/Morphology; Growth rate; Irradiance; Laboratory experiment; Laboratory strains; Light; Maximal electron transport rate, relative; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate organic carbon, per cell; Particulate organic nitrogen per cell; Pelagos; pH; Photosynthetic carbon fixation rate, per chlorophyll a; Photosynthetic carbon fixation rate per cell; Photosynthetic quantum efficiency; Phytoplankton; Primary production/Photosynthesis; Ratio; Replicate; Salinity; Single species; Species; Synechococcus sp.; Temperature, water; Treatment; Type of study  (1)
Document type
Keywords
Publisher
Years
  • 1
    Publication Date: 2024-03-15
    Description: Large-scale green tides have been invading the coastal zones of the western Yellow Sea annually since 2008. Meanwhile, oceans are becoming more acidic due to continuous absorption of anthropogenic carbon dioxide, and intensive seaweed cultivation in Chinese coastal areas is leading to severe regional nutrient limitation. However, little is known about the combined effects of global and local stressors on the eco-physiology of bloom-forming algae. We cultured Ulva linza for 9–16 days under two levels of pCO2 (400 and 1000 µatm) and four treatments of nutrients (nutrient repletion, N limitation, P limitation, and N–P limitation) to investigate the physiological responses of this green tide alga to the combination of ocean acidification and nutrient limitation. For both sporelings and adult plants, elevated pCO2 did not affect the growth rate when cultured under nutrient-replete conditions but reduced it under P limitation; N or P limitations by themselves reduced growth rate. P limitation resulted in a larger inhibition in growth for sporelings compared to adult plants. Sporelings under P limitation did not reach the mature stage after 16 days of culture while those under P repletion became mature by day 11. Elevated pCO2 reduced net photosynthetic rate for all nutrient treatments but increased nitrate reductase activity and soluble protein content under P-replete conditions. N or P limitation reduced nitrate reductase activity and soluble protein content. These findings indicate that ocean acidification and nutrient limitation would synergistically reduce the growth of Ulva species and may thus hinder the occurrence of green tides in a future ocean environment.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Chlorophyll a; Chlorophyll a, standard deviation; Chlorophyll b; Chlorophyll b, standard deviation; Chlorophyta; Coast and continental shelf; Day of experiment; Electron transport rate, relative; Electron transport rate, relative, standard deviation; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard deviation; Laboratory experiment; Length; Length, standard deviation; Lianyungang_OA; Macroalgae; Macro-nutrients; Net photosynthesis rate, oxygen; Net photosynthesis rate, standard deviation; Nitrate reductase activity; Nitrate reductase activity, standard deviation; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Plantae; Primary production/Photosynthesis; Proteins, soluble; Proteins, standard deviation; Registration number of species; Respiration; Respiration rate, oxygen, dark; Respiration rate, oxygen, standard deviation; Salinity; Single species; Species; Temperate; Temperature, water; Treatment; Type; Ulva linza; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 4200 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-15
    Description: The marine picocyanobacterium Synechococcus accounts for a major fraction of the primary production across the global oceans. However, knowledge of the responses of Synechococcus to changing pCO2 and light levels has been scarcely documented. Hence, we grew Synechococcus sp. CB0101 at two CO2 concentrations (ambient CO2 AC:410 μatm; high CO2 HC:1000 μatm) under various light levels between 25 and 800 μmol photons m−2 s−1 for 10–20 generations and found that the growth of Synechococcus strain CB0101 is strongly influenced by light intensity, peaking at 250 μmol m−2 s−1 and thereafter declined at higher light levels. Synechococcus cells showed a range of acclimation in their photophysiological characteristics, including changes in pigment content, optical absorption cross section, and light harvesting efficiency. Elevated pCO2 inhibited the growth of cells at light intensities close to or greater than saturation, with inhibition being greater under high light. Elevated pCO2 also reduced photosynthetic carbon fixation rates under high light but had smaller effects on the decrease in quantum yield and maximum relative electron transport rates observed under increasing light intensity. At the same time, the elevated pCO2 significantly decreased particulate organic carbon (POC) and particulate organic nitrogen (PON), particularly under low light. Ocean acidification, by increasing the inhibitory effects of high light, may affect the growth and competitiveness of Synechococcus in surface waters in the future scenario.
    Keywords: Alkalinity, total; Aragonite saturation state; Bacteria; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon/Nitrogen ratio; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chlorophyll a per cell; Contribution; Cyanobacteria; Effective quantum yield; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Functional absorption cross sections of photosystem II reaction centers; Growth/Morphology; Growth rate; Irradiance; Laboratory experiment; Laboratory strains; Light; Maximal electron transport rate, relative; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate organic carbon, per cell; Particulate organic nitrogen per cell; Pelagos; pH; Photosynthetic carbon fixation rate, per chlorophyll a; Photosynthetic carbon fixation rate per cell; Photosynthetic quantum efficiency; Phytoplankton; Primary production/Photosynthesis; Ratio; Replicate; Salinity; Single species; Species; Synechococcus sp.; Temperature, water; Treatment; Type of study
    Type: Dataset
    Format: text/tab-separated-values, 1428 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...