GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; BIOACID; Biological Impacts of Ocean Acidification; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcification rate; Calcite saturation state; Calcium carbonate; Calculated using seacarb; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon, organic, particulate; Carbon, organic, particulate/Nitrogen, particulate ratio; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Change; Chlorophyta; Coast and continental shelf; Comment; Curacao; Dictyota sp.; Electron transport rate, relative; EXP; Experiment; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Halimeda opuntia; Identification; Incubation duration; Irradiance; Laboratory experiment; Macroalgae; Macro-nutrients; Maximum photochemical quantum yield of photosystem II; Net photosynthesis rate, oxygen; Nitrogen, total, particulate; Nitrogen/Phosphorus ratio; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Percentage; pH; pH, standard deviation; Phosphates; Plantae; Potentiometric; Potentiometric titration; Primary production/Photosynthesis; Respiration; Respiration rate, oxygen; Salinity; Sample ID; Single species; Species; Table; Temperature, water; Temperature, water, standard deviation; Treatment; Tropical  (1)
  • Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Biological oxygen demand; Biological oxygen demand, standard deviation; Calcification/Dissolution; Calcification rate, standard deviation; Calcification rate, standard error; Calcification rate of calcium carbonate; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, organic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, partial pressure, standard deviation; Chlorophyta; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Date; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gross photosynthesis rate, oxygen; Gross photosynthesis rate, oxygen, standard error; Gross photosynthesis rate, standard deviation; Halimeda incrassata; Laboratory experiment; Macroalgae; Maximum photochemical quantum yield of photosystem II; Maximum photochemical quantum yield of photosystem II, standard error; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Other; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Plantae; Primary production/Photosynthesis; Puerto_Morelos__OA; Registration number of species; Respiration; Respiration rate, oxygen; Respiration rate, oxygen, standard deviation; Respiration rate, oxygen, standard error; Salinity; Salinity, standard deviation; Single species; Species; Temperature, standard deviation; Temperature, water; Time in days; Treatment; Tropical; Type; Udotea flabellum; Uniform resource locator/link to reference  (1)
  • Area; Biodiversity mapping; BIOMAP; Calculated, see abstract; Counted; grazing; Number; seagrass traits; sea urchin; Site; Species; Tripneustes gratilla; tropical seagrass; Unguja_Island_Changuu2; Zanzibar Archipealgo, Tanzania  (1)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Meyer, Friedrich Wilhelm; Schubert, Nadine; Diele, Karen; Teichberg, Mirta; Wild, Christian; Enríquez, Susana (2016): Effect of inorganic and organic carbon enrichments (DIC and DOC) on the photosynthesis and calcification rates of two calcifying green algae from a Caribbean reef lagoon. PLoS ONE, 11(8), e0160268, https://doi.org/10.1371/journal.pone.0160268
    Publication Date: 2024-03-15
    Description: Coral reefs worldwide are affected by increasing dissolved inorganic carbon (DIC) and organic carbon (DOC) concentrations due to ocean acidification (OA) and coastal eutrophication. These two stressors can occur simultaneously, particularly in near-shore reef environments with increasing anthropogenic pressure. However, experimental studies on how elevated DIC and DOC interact are scarce and fundamental to understanding potential synergistic effects and foreseeing future changes in coral reef function. Using an open mesocosm experiment, the present study investigated the impact of elevated DIC (pHNBS: 8.2 and 7.8; pCO2: 377 and 1076 µatm) and DOC (added as 833 µmol/L of glucose) on calcification and photosynthesis rates of two common calcifying green algae, Halimeda incrassata and Udotea flabellum, in a shallow reef environment. Our results revealed that under elevated DIC, algal photosynthesis decreased similarly for both species, but calcification was more affected in H. incrassata, which also showed carbonate dissolution rates. Elevated DOC reduced photosynthesis and calcification rates in H. incrassata, while in U. flabellum photosynthesis was unaffected and thalus calcification was severely impaired. The combined treatment showed an antagonistic effect of elevated DIC and DOC on the photosynthesis and calcification rates of H. incrassata, and an additive effect in U. flabellum. We conclude that the dominant sand dweller H. incrassata is more negatively affected by both DIC and DOC enrichments, but that their impact could be mitigated when they occur simultaneously. In contrast, U. flabellum can be less affected in coastal eutrophic waters by elevated DIC, but its contribution to reef carbonate sediment production could be further reduced. Accordingly, while the capacity of environmental eutrophication to exacerbate the impact of OA on algal-derived carbonate sand production seems to be species-specific, significant reductions can be expected under future OA scenarios, with important consequences for beach erosion and coastal sediment dynamics.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Biological oxygen demand; Biological oxygen demand, standard deviation; Calcification/Dissolution; Calcification rate, standard deviation; Calcification rate, standard error; Calcification rate of calcium carbonate; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, organic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, partial pressure, standard deviation; Chlorophyta; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Date; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gross photosynthesis rate, oxygen; Gross photosynthesis rate, oxygen, standard error; Gross photosynthesis rate, standard deviation; Halimeda incrassata; Laboratory experiment; Macroalgae; Maximum photochemical quantum yield of photosystem II; Maximum photochemical quantum yield of photosystem II, standard error; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Other; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Plantae; Primary production/Photosynthesis; Puerto_Morelos__OA; Registration number of species; Respiration; Respiration rate, oxygen; Respiration rate, oxygen, standard deviation; Respiration rate, oxygen, standard error; Salinity; Salinity, standard deviation; Single species; Species; Temperature, standard deviation; Temperature, water; Time in days; Treatment; Tropical; Type; Udotea flabellum; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 3488 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hofmann, Laurie C; Bischof, Kai; Baggini, Cecilia; Johnson, Andrew; Koop-Jakobsen, Ketil; Teichberg, Mirta (2015): CO2 and inorganic nutrient enrichment affect the performance of a calcifying green alga and its noncalcifying epiphyte. Oecologia, 177(4), 1157-1169, https://doi.org/10.1007/s00442-015-3242-5
    Publication Date: 2024-03-15
    Description: Ocean acidification studies in the past decade have greatly improved our knowledge of how calcifying organisms respond to increased surface ocean CO2 levels. It has become evident that, for many organisms, nutrient availability is an important factor that influences their physiological responses and competitive interactions with other species. Therefore, we tested how simulated ocean acidification and eutrophication (nitrate and phosphate enrichment) interact to affect the physiology and ecology of a calcifying chlorophyte macroalga (Halimeda opuntia (L.) J.V. Lamouroux) and its common noncalcifying epiphyte (Dictyota sp.) in a 4-week fully crossed multifactorial experiment. Inorganic nutrient enrichment (+NP) had a strong influence on all responses measured with the exception of net calcification. Elevated CO2 alone significantly decreased electron transport rates of the photosynthetic apparatus and resulted in phosphorus limitation in both species, but had no effect on oxygen production or respiration. The combination of CO2 and +NP significantly increased electron transport rates in both species. While +NP alone stimulated H. opuntia growth rates, Dictyota growth was significantly stimulated by nutrient enrichment only at elevated CO2, which led to the highest biomass ratios of Dictyota to Halimeda. Our results suggest that inorganic nutrient enrichment alone stimulates several aspects of H. opuntia physiology, but nutrient enrichment at a CO2 concentration predicted for the end of the century benefits Dictyota sp. and hinders its calcifying basibiont H. opuntia.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; BIOACID; Biological Impacts of Ocean Acidification; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcification rate; Calcite saturation state; Calcium carbonate; Calculated using seacarb; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon, organic, particulate; Carbon, organic, particulate/Nitrogen, particulate ratio; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Change; Chlorophyta; Coast and continental shelf; Comment; Curacao; Dictyota sp.; Electron transport rate, relative; EXP; Experiment; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Halimeda opuntia; Identification; Incubation duration; Irradiance; Laboratory experiment; Macroalgae; Macro-nutrients; Maximum photochemical quantum yield of photosystem II; Net photosynthesis rate, oxygen; Nitrogen, total, particulate; Nitrogen/Phosphorus ratio; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Percentage; pH; pH, standard deviation; Phosphates; Plantae; Potentiometric; Potentiometric titration; Primary production/Photosynthesis; Respiration; Respiration rate, oxygen; Salinity; Sample ID; Single species; Species; Table; Temperature, water; Temperature, water, standard deviation; Treatment; Tropical
    Type: Dataset
    Format: text/tab-separated-values, 23003 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-06-12
    Description: To assess the sea urchin distribution across the seagrass species, we measured the sea urchin density in three monospecific meadows (T. ciliatum, C. serrulata and H. uninervis) and two mixed meadows (dominated by T. hemprichii and by S. isoetifolium) in the study site. We selected three patches per meadow type. Each patch was 25 square meters, delimited with a transect tape. We counted the number of sea urchins at high tide, and divided this number by the surface of the patch to calculate sea urchin density per square meter of meadow (individuals per square meter).
    Keywords: Area; Biodiversity mapping; BIOMAP; Calculated, see abstract; Counted; grazing; Number; seagrass traits; sea urchin; Site; Species; Tripneustes gratilla; tropical seagrass; Unguja_Island_Changuu2; Zanzibar Archipealgo, Tanzania
    Type: Dataset
    Format: text/tab-separated-values, 90 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...