GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthic animals; Benthos; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcification/Dissolution; Calcification rate of calcium carbonate; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbohydrates per surface area; Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell density; Chlorophyll a; Cnidaria; Coast and continental shelf; Colony number/ID; Containers and aquaria (20-1000 L or 〈 1 m**2); Coral; Day of experiment; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Laboratory experiment; Lipids per surface area; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Porites astreoides; Port_Honduras_Marine_Reserve; Protein per surface area; Pseudodiploria strigosa; Salinity; Salinity, standard deviation; Sapodilla_Cayes_Marine_Reserve; Siderastrea siderea; Single species; Site; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Surface area; Temperature; Temperature, water; Temperature, water, standard deviation; Treatment; Tropical; Type; Zone  (1)
Document type
Keywords
Publisher
Years
  • 1
    Publication Date: 2024-03-15
    Description: Global change driven by anthropogenic carbon emissions is altering ecosystems at unprecedented rates, especially coral reefs, whose symbiosis with algal symbionts is particularly vulnerable to increasing ocean temperatures and altered carbonate chemistry. Here, we assess the physiological responses of three Caribbean coral (animal host + algal symbiont) species from an inshore and offshore reef environment after exposure to simulated ocean warming (28, 31°C), acidification (300–3290 μatm), and the combination of stressors for 93 days. We used multidimensional analyses to assess how a variety of coral physiological parameters respond to ocean acidification and warming. Our results demonstrate reductions in coral health in Siderastrea siderea and Porites astreoides in response to projected ocean acidification, while future warming elicited severe declines in Pseudodiploria strigosa. Offshore S. siderea fragments exhibited higher physiological plasticity than inshore counterparts, suggesting that this offshore population was more susceptible to changing conditions. There were no plasticity differences in P. strigosa and P. astreoides between natal reef environments, however, temperature evoked stronger responses in both species. Interestingly, while each species exhibited unique physiological responses to ocean acidification and warming, when data from all three species are modelled together, convergent stress responses to these conditions are observed, highlighting the overall sensitivities of tropical corals to these stressors. Our results demonstrate that while ocean warming is a severe acute stressor that will have dire consequences for coral reefs globally, chronic exposure to acidification may also impact coral physiology to a greater extent in some species than previously assumed. Further, our study identifies S. siderea and P. astreoides as potential 'winners' on future Caribbean coral reefs due to their resilience under projected global change stressors, while P. strigosa will likely be a 'loser' due to their sensitivity to thermal stress events. Together, these species-specific responses to global change we observe will likely manifest in altered Caribbean reef assemblages in the future.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthic animals; Benthos; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcification/Dissolution; Calcification rate of calcium carbonate; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbohydrates per surface area; Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell density; Chlorophyll a; Cnidaria; Coast and continental shelf; Colony number/ID; Containers and aquaria (20-1000 L or 〈 1 m**2); Coral; Day of experiment; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Laboratory experiment; Lipids per surface area; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Porites astreoides; Port_Honduras_Marine_Reserve; Protein per surface area; Pseudodiploria strigosa; Salinity; Salinity, standard deviation; Sapodilla_Cayes_Marine_Reserve; Siderastrea siderea; Single species; Site; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Surface area; Temperature; Temperature, water; Temperature, water, standard deviation; Treatment; Tropical; Type; Zone
    Type: Dataset
    Format: text/tab-separated-values, 13283 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...