GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aplysia punctata; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthic animals; Benthos; Bicarbonate ion; Calcification/Dissolution; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2calc; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Dry mass; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Laboratory experiment; Mollusca; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Potentiometric; Potentiometric titration; Registration number of species; Respiration; Respiration rate, oxygen; Salinity; Salinity, standard deviation; Sample ID; Shell length; Single species; Species; Temperate; Temperature, water; Temperature, water, standard deviation; Treatment; Type; Uniform resource locator/link to reference; Width  (1)
  • Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Behaviour; Benthic animals; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Calculated using seacarb after Orr et al. (2018); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Coast and continental shelf; Coefficient of variation; Comment; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Fugacity of carbon dioxide in seawater, standard deviation; Growth/Morphology; Identification; KMRIC; Laboratory experiment; Length; Mollusca; Mytilus trossulus; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Potentiometric; Potentiometric titration; Registration number of species; Salinity; Salinity, standard deviation; Single species; Size; Species; Temperate; Temperature; Temperature, water; Temperature, water, standard deviation; Time, standard deviation; Time, standard error; Time in seconds; Treatment; Type; Uniform resource locator/link to reference; Wet mass  (1)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Carey, Nicholas; Dupont, Sam; Sigwart, Julia D (2016): Sea hare Aplysia punctata (mollusca: Gastropoda) can maintain shell calcification under extreme ocean acidification. Biological Bulletin, 231(2), 142-151, https://doi.org/10.1086/690094
    Publication Date: 2024-03-15
    Description: Ocean acidification is expected to cause energetic constraints upon marine calcifying organisms such as molluscs and echinoderms, because of the increased costs of building or maintaining shell material in lower pH. We examined metabolic rate, shell morphometry, and calcification in the sea hare Aplysia punctata under short-term exposure (19 days) to an extreme ocean acidification scenario (pH 7.3, 2800 µatm pCO2), along with a group held in control conditions (pH 8.1, 344 µatm pCO2). This gastropod and its congeners are broadly distributed and locally abundant grazers, and have an internal shell that protects the internal organs. Specimens were examined for metabolic rate via closed-chamber respirometry, followed by removal and examination of the shell under confocal microscopy. Staining using calcein determined the amount of new calcification that occurred over 6 days at the end of the acclimation period. The width of new, pre-calcified shell on the distal shell margin was also quantified as a proxy for overall shell growth. Aplysia punctata showed a 30% reduction in metabolic rate under low pH, but calcification was not affected. This species is apparently able to maintain calcification rate even under extreme low pH, and even when under the energetic constraints of lower metabolism. This finding adds to the evidence that calcification is a largely autonomous process of crystallization that occurs as long as suitable haeomocoel conditions are preserved. There was, however, evidence that the accretion of new, noncalcified shell material may have been reduced, which would lead to overall reduced shell growth under longer-term exposures to low pH independent of calcification. Our findings highlight that the chief impact of ocean acidification upon the ability of marine invertebrates to maintain their shell under low pH may be energetic constraints that hinder growth of supporting structure, rather than maintenance of calcification.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aplysia punctata; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthic animals; Benthos; Bicarbonate ion; Calcification/Dissolution; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2calc; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Dry mass; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Laboratory experiment; Mollusca; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Potentiometric; Potentiometric titration; Registration number of species; Respiration; Respiration rate, oxygen; Salinity; Salinity, standard deviation; Sample ID; Shell length; Single species; Species; Temperate; Temperature, water; Temperature, water, standard deviation; Treatment; Type; Uniform resource locator/link to reference; Width
    Type: Dataset
    Format: text/tab-separated-values, 1184 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-15
    Description: Startle response behaviours are important in predator avoidance and escape for a wide array of animals. For many marine invertebrates, however, startle response behaviours are understudied, and the effects of global change stressors on these responses are unknown. We exposed two size classes of blue mussels (Mytilus edulis * trossulus) to different combinations of temperature (15 and 19 °C) and pH (8.2 and 7.5 pHT) for 3 months and subsequently measured individual time to open following a tactile predator cue (i.e. startle response time) over a series of four consecutive trials. Time to open was highly repeatable in the short term and decreased linearly across the four trials. Individuals from the larger size class had a shorter time to open than their smaller-sized counterparts. High temperature increased time to open compared to low temperature, while pH had no effect. These results suggest that bivalve time to open is repeatable, related to relative vulnerability to predation and affected by temperature. Given that increased closure times impact feeding and respiration, the effect of temperature on closure duration may play a role in the sensitivity to ocean warming in this species and contribute to ecosystem level effects.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Behaviour; Benthic animals; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Calculated using seacarb after Orr et al. (2018); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Coast and continental shelf; Coefficient of variation; Comment; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Fugacity of carbon dioxide in seawater, standard deviation; Growth/Morphology; Identification; KMRIC; Laboratory experiment; Length; Mollusca; Mytilus trossulus; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Potentiometric; Potentiometric titration; Registration number of species; Salinity; Salinity, standard deviation; Single species; Size; Species; Temperate; Temperature; Temperature, water; Temperature, water, standard deviation; Time, standard deviation; Time, standard error; Time in seconds; Treatment; Type; Uniform resource locator/link to reference; Wet mass
    Type: Dataset
    Format: text/tab-separated-values, 6493 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...