GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alkalinity, total; Alkalinity, total, standard deviation; Amphiura filiformis; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Ash free dry mass; Asterias rubens; Benthic animals; Benthos; Bicarbonate ion; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2calc; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Echinodermata; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Laboratory experiment; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Ophiothrix fragilis; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Potentiometric; Potentiometric titration; Respiration; Respiration rate, oxygen; Salinity; Sample ID; Single species; Species; Temperate; Temperature; Temperature, water; Temperature, water, standard deviation; Treatment  (1)
  • Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aplysia punctata; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthic animals; Benthos; Bicarbonate ion; Calcification/Dissolution; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2calc; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Dry mass; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Laboratory experiment; Mollusca; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Potentiometric; Potentiometric titration; Registration number of species; Respiration; Respiration rate, oxygen; Salinity; Salinity, standard deviation; Sample ID; Shell length; Single species; Species; Temperate; Temperature, water; Temperature, water, standard deviation; Treatment; Type; Uniform resource locator/link to reference; Width  (1)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Carey, Nicholas; Dupont, Sam; Lundve, Bengt; Sigwart, Julia D (2014): One size fits all: stability of metabolic scaling under warming and ocean acidification in echinoderms. Marine Biology, 161(9), 2131-2142, https://doi.org/10.1007/s00227-014-2493-8
    Publication Date: 2024-03-15
    Description: Responses by marine species to ocean acidification (OA) have recently been shown to be modulated by external factors including temperature, food supply and salinity. However the role of a fundamental biological parameter relevant to all organisms, that of body size, in governing responses to multiple stressors has been almost entirely overlooked. Recent consensus suggests allometric scaling of metabolism with body size differs between species, the commonly cited 'universal' mass scaling exponent (b) of ¾ representing an average of exponents that naturally vary. One model, the Metabolic-Level Boundaries hypothesis, provides a testable prediction: that b will decrease within species under increasing temperature. However, no previous studies have examined how metabolic scaling may be directly affected by OA. We acclimated a wide body-mass range of three common NE Atlantic echinoderms (the sea star Asterias rubens, the brittlestars Ophiothrix fragilis and Amphiura filiformis) to two levels of pCO2 and three temperatures, and metabolic rates were determined using closed-chamber respirometry. The results show that contrary to some models these echinoderm species possess a notable degree of stability in metabolic scaling under different abiotic conditions; the mass scaling exponent (b) varied in value between species, but not within species under different conditions. Additionally, we found no effect of OA on metabolic rates in any species. These data suggest responses to abiotic stressors are not modulated by body size in these species, as reflected in the stability of the metabolic scaling relationship. Such equivalence in response across ontogenetic size ranges has important implications for the stability of ecological food webs.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Amphiura filiformis; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Ash free dry mass; Asterias rubens; Benthic animals; Benthos; Bicarbonate ion; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2calc; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Echinodermata; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Laboratory experiment; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Ophiothrix fragilis; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Potentiometric; Potentiometric titration; Respiration; Respiration rate, oxygen; Salinity; Sample ID; Single species; Species; Temperate; Temperature; Temperature, water; Temperature, water, standard deviation; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 12028 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Carey, Nicholas; Dupont, Sam; Sigwart, Julia D (2016): Sea hare Aplysia punctata (mollusca: Gastropoda) can maintain shell calcification under extreme ocean acidification. Biological Bulletin, 231(2), 142-151, https://doi.org/10.1086/690094
    Publication Date: 2024-03-15
    Description: Ocean acidification is expected to cause energetic constraints upon marine calcifying organisms such as molluscs and echinoderms, because of the increased costs of building or maintaining shell material in lower pH. We examined metabolic rate, shell morphometry, and calcification in the sea hare Aplysia punctata under short-term exposure (19 days) to an extreme ocean acidification scenario (pH 7.3, 2800 µatm pCO2), along with a group held in control conditions (pH 8.1, 344 µatm pCO2). This gastropod and its congeners are broadly distributed and locally abundant grazers, and have an internal shell that protects the internal organs. Specimens were examined for metabolic rate via closed-chamber respirometry, followed by removal and examination of the shell under confocal microscopy. Staining using calcein determined the amount of new calcification that occurred over 6 days at the end of the acclimation period. The width of new, pre-calcified shell on the distal shell margin was also quantified as a proxy for overall shell growth. Aplysia punctata showed a 30% reduction in metabolic rate under low pH, but calcification was not affected. This species is apparently able to maintain calcification rate even under extreme low pH, and even when under the energetic constraints of lower metabolism. This finding adds to the evidence that calcification is a largely autonomous process of crystallization that occurs as long as suitable haeomocoel conditions are preserved. There was, however, evidence that the accretion of new, noncalcified shell material may have been reduced, which would lead to overall reduced shell growth under longer-term exposures to low pH independent of calcification. Our findings highlight that the chief impact of ocean acidification upon the ability of marine invertebrates to maintain their shell under low pH may be energetic constraints that hinder growth of supporting structure, rather than maintenance of calcification.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aplysia punctata; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthic animals; Benthos; Bicarbonate ion; Calcification/Dissolution; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2calc; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Dry mass; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Laboratory experiment; Mollusca; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Potentiometric; Potentiometric titration; Registration number of species; Respiration; Respiration rate, oxygen; Salinity; Salinity, standard deviation; Sample ID; Shell length; Single species; Species; Temperate; Temperature, water; Temperature, water, standard deviation; Treatment; Type; Uniform resource locator/link to reference; Width
    Type: Dataset
    Format: text/tab-separated-values, 1184 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...