GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alkalinity, total; Alkalinity, total, standard deviation; Ammonium, flux; Amphiura filiformis; Animalia; Benthic animals; Benthos; Carbon, inorganic, dissolved; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Echinodermata; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Experiment day; Laboratory experiment; Multi meter, WTW, LF 197; Nitrate, flux; Nitrite, flux; North Atlantic; Nutrient autoanalyzer (Bran and Luebbe, AAIII); OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; pH; pH, standard deviation; pH meter (Mettler Toledo, USA); Phosphate, flux; Salinity; Silicate, flux; Single species; Temperate; Temperature, water  (1)
  • Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Biomass, wet mass; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcite saturation state; Calcite saturation state, standard deviation; Calcium carbonate, mass; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Community composition and diversity; Description; Entire community; Evenness of species; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Laboratory experiment; Mount_Batten; Net calcification rate of calcium carbonate; North Atlantic; Number of calcareous individuals; Number of calcareous species; Number of individuals; Number of non-calcareous individuals; Number of non-calcareous species; Number of species; OA-ICC; Ocean Acidification International Coordination Centre; Organisms, calcareous, biomass; Organisms, non-calcareous, biomass; Oxygen; Oxygen, standard deviation; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Potentiometric; Potentiometric titration; Rocky-shore community; Salinity; Salinity, standard deviation; Soft tissue, mass; Temperate; Temperature, standard deviation; Temperature, water; Treatment  (1)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Wood, Hannah; Widdicombe, Stephen; Spicer, John I (2009): The influence of hypercapnia and the infaunal brittlestar Amphiura filiformis on sediment nutrient flux – will ocean acidification affect nutrient exchange? Biogeosciences, 6(10), 2015-2024, https://doi.org/10.5194/bg-6-2015-2009
    Publication Date: 2023-05-12
    Description: Rising levels of atmospheric carbon dioxide and the concomitant increased uptake of this by the oceans is resulting in hypercapnia-related reduction of ocean pH. Research focussed on the direct effects of these physicochemical changes on marine invertebrates has begun to improve our understanding of impacts at the level of individual physiologies. However, CO2-related impairment of organisms' contribution to ecological or ecosystem processes has barely been addressed. The burrowing ophiuroid Amphiura filiformis, which has a physiology that makes it susceptible to reduced pH, plays a key role in sediment nutrient cycling by mixing and irrigating the sediment, a process known as bioturbation. Here we investigate the role of A. filiformis in modifying nutrient flux rates across the sediment-water boundary and the impact of CO2- related acidification on this process. A 40 day exposure study was conducted under predicted pH scenarios from the years 2100 (pH 7.7) and 2300 (pH 7.3), plus an additional treatment of pH 6.8. This study demonstrated strong relationships between A. filiformis density and cycling of some nutrients; activity increases the sediment uptake of phosphate and the release of nitrite and nitrate. No relationship between A. filiformis density and the flux of ammonium or silicate were observed. Results also indicated that, within the timescale of this experiment, effects at the individual bioturbator level appear not to translate into reduced ecosystem influence. However, long term survival of key bioturbating species is far from assured and changes in both bioturbation and microbial processes could alter key biogeochemical processes in future, more acidic oceans.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Ammonium, flux; Amphiura filiformis; Animalia; Benthic animals; Benthos; Carbon, inorganic, dissolved; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Echinodermata; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Experiment day; Laboratory experiment; Multi meter, WTW, LF 197; Nitrate, flux; Nitrite, flux; North Atlantic; Nutrient autoanalyzer (Bran and Luebbe, AAIII); OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; pH; pH, standard deviation; pH meter (Mettler Toledo, USA); Phosphate, flux; Salinity; Silicate, flux; Single species; Temperate; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 2727 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Christen, Nadja; Calosi, Piero; McNeill, C L; Widdicombe, Stephen (2012): Structural and functional vulnerability to elevated pCO2 in marine benthic communities. Marine Biology, 160(8), 2113-2128, https://doi.org/10.1007/s00227-012-2097-0
    Publication Date: 2024-03-15
    Description: The effect of elevated pCO2/low pH on marine invertebrate benthic biodiversity, community structure and selected functional responses which underpin ecosystem services (such as community production and calcification) was tested in a medium-term (30 days) mesocosm experiment in June 2010. Standardised intertidal macrobenthic communities, collected (50.3567°N, 4.1277°W) using artificial substrate units (ASUs), were exposed to one of seven pH treatments (8.05, 7.8. 7.6, 7.4, 7.2, 6.8 and 6.0). Community net calcification/dissolution rates, as well as changes in biomass, community structure and diversity, were measured at the end of the experimental period. Communities showed significant changes in structure and reduced diversity in response to reduced pH: shifting from a community dominated by calcareous organisms to one dominated by non-calcareous organisms around either pH 7.2 (number of individuals and species) or pH 7.8 (biomass). These results were supported by a reduced total weight of CaCO3 structures in all major taxa at lowered pH and a switch from net calcification to net dissolution around pH 7.4 (Omega calc = 0.78, Omega ara = 0.5). Overall community soft tissue biomass did not change with pH and high mortality was observed only at pH 6.0, although molluscs and arthropods showed significant decreases in soft tissue. This study supports and refines previous findings on how elevated pCO2 can induce changes in marine biodiversity, underlined by differential vulnerability of different phyla. In addition, it shows significant elevated pCO2-/low pH-dependent changes in fundamental community functional responses underpinning changes in ecosystem services.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Biomass, wet mass; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcite saturation state; Calcite saturation state, standard deviation; Calcium carbonate, mass; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Community composition and diversity; Description; Entire community; Evenness of species; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Laboratory experiment; Mount_Batten; Net calcification rate of calcium carbonate; North Atlantic; Number of calcareous individuals; Number of calcareous species; Number of individuals; Number of non-calcareous individuals; Number of non-calcareous species; Number of species; OA-ICC; Ocean Acidification International Coordination Centre; Organisms, calcareous, biomass; Organisms, non-calcareous, biomass; Oxygen; Oxygen, standard deviation; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Potentiometric; Potentiometric titration; Rocky-shore community; Salinity; Salinity, standard deviation; Soft tissue, mass; Temperate; Temperature, standard deviation; Temperature, water; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 6573 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...