GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alaska North Slope; Aldan River outcrop Mamontova Gora; Allaikha_Yedoma; Arctic Ocean; Area/locality; AWI_Perma; Ayon; base of ice complex; Batagai_2014; Batagai_Kunitsky_2010; Batagay, Yakutia; Beaver_Creek; Belkovsky; Binary Object; BLOSSOM; Blossom Cape; Bolshoy_Lyakhovsky_Island_1999; Bolshoy Lyakhovsky Island, NE Siberia; Buor_Khaya_2010; Buor Khaya; Bykovsky_Peninsula; Cape_Anisii_Kotelnii_Island_2002; Cape_Maly_Chukochy; Cape Mamontov Klyk, Laptev Sea; Central_Yakutia; Central Yakutia; Chukotka, Russia; climate feedbacks; Coast_of_the_East-Siberian_Sea; Col-3_Colville_River_2009; Col-5_Colville_River_2009a; Col-5_Colville_River_2009b; Comment; CRREL; DATE/TIME; Dresvyanyi_Island; Duvanny_Yar; Duvanny_Yar_2008; Duvanny_Yar_2009; Duvannyi_Yar; Duvanny Yar, Yakutia; East Siberian Sea; Elgene_Kyuele_2010a; Elgene_Kyuele_2010b; Event label; File format; File name; File type; Geological profile sampling; GEOPRO; Great_Khomus_River; Greenhouse gas source; Identification; Investigator; IPA_Yedoma_Action_Group; Itkillik_River; Itkillik_River_2012a; Itkillik_River_2012b; Itkillik River Outcrop, Alaskan North Slope; Khaptashin_Yar; Khardang; Kitluk_River_Seward_Peninsula_2010; Klondike_area; Kolyma Lowland, NE Siberia; Konstantinovskoye; Kotelnii Island, NE Siberia; Kurugnakh_2002; Kurugnakh_2008; Kurungnakh; Kurungnakh_Island_Lena-Delta_2005; Kurungnakh Island, Lena Delta, Siberia; Kychchyma; KYT; Kytalyk; Kytalyk, Indigirka lowlands, Siberia; Lake El'gene Kyuele, central Siberian Plateau; Late Pleistocene; LATITUDE; Lena-Amga_Rivers; Lena-Anabar Lowland, NE Siberia; Lena Delta, NE Siberia; Lena Delta, Siberia, Russia; Lesser_Chaun_Strait; LONGITUDE; Maly_Lyakhovsky_Island; Mamontov_Klyk_2011; Mamontova_Gora_2001; Mamontovy_Gora_Aldan_River_2001; Mamontovy_Khayata; Mamontovy_Klyk_2003; Molotlovskiy_Kamen; MULT; Multiple investigations; Muostakh_2012; Muostakh Island, Laptev Sea; Mys_Chukochi_2009a; Mys_Chukochi_2009b; N_Yakutia; Nagym; Nagym_Lena; Northern_Bykovsky_Peninsula_2014; Northern_Seward_Peninsula; NW Chukotka; Old_Allaikha; Oyagoss_Yar_2002; Palisades; Permafrost; Permafrost Research; PETA-CARB; Plakhino; Rapid Permafrost Thaw in a Warming Arctic and Impacts on the Soil Organic Carbon Pool; Rauchua_river_bank_2011; Rauhua_River; Russkoe; Sakha Republic, Russia; Seward Peninsula, Alaska; Sobo_Sise_2014; Sobo_Sise_Lena-Delta_2014; Sobo-Sise_Cliff; Sobo Sise Island, Lena Delta; SSC; Stolboboy_Island_2002; Stolbovoy Island, NE Siberia; Syrdakh_1976; Syrdakh, Central Yakutia; Tabaga_2013a; Tabaga_2013b; Tabaga, Central Yakutia; Tanda; thermokarst; The Yedoma Region: A Synthesis of Circum-Arctic Distribution and Thickness; Tube_Dispenser_Lake_Cherskii_2007; Tyungyulyu_alas; Ust_Rauchua_coast_2014; Uste-Omolon_Yar; Vankina_River_mouth; Vault_Creek_Tunnel; Vilyui_River; Yana-Indigirka Lowland, NE Siberia; Yedoma; Yedoma_IRYP  (1)
  • NDVI  (1)
Document type
Keywords
Years
  • 1
    Publication Date: 2024-05-07
    Description: Ice-rich permafrost in the circum-Arctic and sub-Arctic, such as late Pleistocene Yedoma, are especially prone to degradation due to climate change or human activity. When Yedoma deposits thaw, large amounts of frozen organic matter and biogeochemically relevant elements return into current biogeochemical cycles. Building on previous mapping efforts, the objective of this paper is to compile the first digital pan-Arctic Yedoma map and spatial database of Yedoma coverage. Therefore, we 1) synthesized, analyzed, and digitized geological and stratigraphical maps allowing identification of Yedoma occurrence at all available scales, and 2) compiled field data and expert knowledge for creating Yedoma map confidence classes. We used GIS-techniques to vectorize maps and harmonize site information based on expert knowledge. Hence, here we synthesize data on the circum-Arctic and sub-Arctic distribution and thickness of Yedoma for compiling a preliminary circum-polar Yedoma map. To harmonize the different datasets and to avoid merging artifacts, we applied map edge cleaning while merging data from different database layers. For the digitalization and spatial integration, we used Adobe Photoshop CS6 (Version: 13.0 x64), Adobe Illustrator CS6 (Version 16.0.3 x64), Avenza MAPublisher 9.5.4 (Illustrator Plug-In) and ESRI ArcGIS 10.6.1 for Desktop (Advanced License). Generally, we followed workflow of figure 2 of the related publication (IRYP Version 2, Strauss et al 2021, https://doi.org/10.3389/feart.2021.758360). We included a range of attributes for Yedoma areas based on lithological and stratigraphic information from the source maps and assigned three different confidence levels of the presence of Yedoma (confirmed, likely, or uncertain). Using a spatial buffer of 20 km around mapped Yedoma occurrences, we derived an extent of the Yedoma domain. Our result is a vector-based map of the current pan-Arctic Yedoma domain that covers approximately 2,587,000 km², whereas Yedoma deposits are found within 480,000 km² of this region. We estimate that 35% of the total Yedoma area today is located in the tundra zone, and 65% in the taiga zone. With this Yedoma mapping, we outlined the substantial spatial extent of late Pleistocene Yedoma deposits and created a unique pan-Arctic dataset including confidence estimates.
    Keywords: Alaska North Slope; Aldan River outcrop Mamontova Gora; Allaikha_Yedoma; Arctic Ocean; Area/locality; AWI_Perma; Ayon; base of ice complex; Batagai_2014; Batagai_Kunitsky_2010; Batagay, Yakutia; Beaver_Creek; Belkovsky; Binary Object; BLOSSOM; Blossom Cape; Bolshoy_Lyakhovsky_Island_1999; Bolshoy Lyakhovsky Island, NE Siberia; Buor_Khaya_2010; Buor Khaya; Bykovsky_Peninsula; Cape_Anisii_Kotelnii_Island_2002; Cape_Maly_Chukochy; Cape Mamontov Klyk, Laptev Sea; Central_Yakutia; Central Yakutia; Chukotka, Russia; climate feedbacks; Coast_of_the_East-Siberian_Sea; Col-3_Colville_River_2009; Col-5_Colville_River_2009a; Col-5_Colville_River_2009b; Comment; CRREL; DATE/TIME; Dresvyanyi_Island; Duvanny_Yar; Duvanny_Yar_2008; Duvanny_Yar_2009; Duvannyi_Yar; Duvanny Yar, Yakutia; East Siberian Sea; Elgene_Kyuele_2010a; Elgene_Kyuele_2010b; Event label; File format; File name; File type; Geological profile sampling; GEOPRO; Great_Khomus_River; Greenhouse gas source; Identification; Investigator; IPA_Yedoma_Action_Group; Itkillik_River; Itkillik_River_2012a; Itkillik_River_2012b; Itkillik River Outcrop, Alaskan North Slope; Khaptashin_Yar; Khardang; Kitluk_River_Seward_Peninsula_2010; Klondike_area; Kolyma Lowland, NE Siberia; Konstantinovskoye; Kotelnii Island, NE Siberia; Kurugnakh_2002; Kurugnakh_2008; Kurungnakh; Kurungnakh_Island_Lena-Delta_2005; Kurungnakh Island, Lena Delta, Siberia; Kychchyma; KYT; Kytalyk; Kytalyk, Indigirka lowlands, Siberia; Lake El'gene Kyuele, central Siberian Plateau; Late Pleistocene; LATITUDE; Lena-Amga_Rivers; Lena-Anabar Lowland, NE Siberia; Lena Delta, NE Siberia; Lena Delta, Siberia, Russia; Lesser_Chaun_Strait; LONGITUDE; Maly_Lyakhovsky_Island; Mamontov_Klyk_2011; Mamontova_Gora_2001; Mamontovy_Gora_Aldan_River_2001; Mamontovy_Khayata; Mamontovy_Klyk_2003; Molotlovskiy_Kamen; MULT; Multiple investigations; Muostakh_2012; Muostakh Island, Laptev Sea; Mys_Chukochi_2009a; Mys_Chukochi_2009b; N_Yakutia; Nagym; Nagym_Lena; Northern_Bykovsky_Peninsula_2014; Northern_Seward_Peninsula; NW Chukotka; Old_Allaikha; Oyagoss_Yar_2002; Palisades; Permafrost; Permafrost Research; PETA-CARB; Plakhino; Rapid Permafrost Thaw in a Warming Arctic and Impacts on the Soil Organic Carbon Pool; Rauchua_river_bank_2011; Rauhua_River; Russkoe; Sakha Republic, Russia; Seward Peninsula, Alaska; Sobo_Sise_2014; Sobo_Sise_Lena-Delta_2014; Sobo-Sise_Cliff; Sobo Sise Island, Lena Delta; SSC; Stolboboy_Island_2002; Stolbovoy Island, NE Siberia; Syrdakh_1976; Syrdakh, Central Yakutia; Tabaga_2013a; Tabaga_2013b; Tabaga, Central Yakutia; Tanda; thermokarst; The Yedoma Region: A Synthesis of Circum-Arctic Distribution and Thickness; Tube_Dispenser_Lake_Cherskii_2007; Tyungyulyu_alas; Ust_Rauchua_coast_2014; Uste-Omolon_Yar; Vankina_River_mouth; Vault_Creek_Tunnel; Vilyui_River; Yana-Indigirka Lowland, NE Siberia; Yedoma; Yedoma_IRYP
    Type: Dataset
    Format: text/tab-separated-values, 1124 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-27
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Loranty, Michael M.; Davydov, Sergey P.; Kropp, Heather; Alexander, Heather D.; Mack, Michelle C.; Natali, Susan M.; Zimov, Nikita S. 2018. "Vegetation Indices Do Not Capture Forest Cover Variation in Upland Siberian Larch Forests." Remote Sens. 10, no. 11: 1686, doi:10.3390/rs10111686.
    Description: Boreal forests are changing in response to climate, with potentially important feedbacks to regional and global climate through altered carbon cycle and albedo dynamics. These feedback processes will be affected by vegetation changes, and feedback strengths will largely rely on the spatial extent and timing of vegetation change. Satellite remote sensing is widely used to monitor vegetation dynamics, and vegetation indices (VIs) are frequently used to characterize spatial and temporal trends in vegetation productivity. In this study we combine field observations of larch forest cover across a 25 km2 upland landscape in northeastern Siberia with high-resolution satellite observations to determine how the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) are related to forest cover. Across 46 forest stands ranging from 0% to 90% larch canopy cover, we find either no change, or declines in NDVI and EVI derived from PlanetScope CubeSat and Landsat data with increasing forest cover. In conjunction with field observations of NDVI, these results indicate that understory vegetation likely exerts a strong influence on vegetation indices in these ecosystems. This suggests that positive decadal trends in NDVI in Siberian larch forests may correspond primarily to increases in understory productivity, or even to declines in forest cover. Consequently, positive NDVI trends may be associated with declines in terrestrial carbon storage and increases in albedo, rather than increases in carbon storage and decreases in albedo that are commonly assumed. Moreover, it is also likely that important ecological changes such as large changes in forest density or variable forest regrowth after fire are not captured by long-term NDVI trends.
    Description: We thank numerous undergraduate and graduate research assistants, and Polaris Project participants for field and lab assistance. We thank the staff and scientists at the Northeast Science Station for logistical and field support. Lastly, we thank the editors and six anonymous reviewers whose comments helped to improve this paper.
    Keywords: Boreal forest ; NDVI ; Phenology ; Greening ; Arctic ; Siberia ; Larch ; CubeSat
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...