GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Ecological Society of America, 2007. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Applications 17 (2007): 213–234, doi:10.1890/1051-0761(2007)017[0213:ATCBOC]2.0.CO;2.
    Description: This paper reviews the current status of using remote sensing and process-based modeling approaches to assess the contemporary and future circumpolar carbon balance of Arctic tundra, including the exchange of both carbon dioxide and methane with the atmosphere. Analyses based on remote sensing approaches that use a 20-year data record of satellite data indicate that tundra is greening in the Arctic, suggesting an increase in photosynthetic activity and net primary production. Modeling studies generally simulate a small net carbon sink for the distribution of Arctic tundra, a result that is within the uncertainty range of field-based estimates of net carbon exchange. Applications of process-based approaches for scenarios of future climate change generally indicate net carbon sequestration in Arctic tundra as enhanced vegetation production exceeds simulated increases in decomposition. However, methane emissions are likely to increase dramatically, in response to rising soil temperatures, over the next century. Key uncertainties in the response of Arctic ecosystems to climate change include uncertainties in future fire regimes and uncertainties relating to changes in the soil environment. These include the response of soil decomposition and respiration to warming and deepening of the soil active layer, uncertainties in precipitation and potential soil drying, and distribution of wetlands. While there are numerous uncertainties in the projections of process-based models, they generally indicate that Arctic tundra will be a small sink for carbon over the next century and that methane emissions will increase considerably, which implies that exchange of greenhouse gases between the atmosphere and Arctic tundra ecosystems is likely to contribute to climate warming.
    Description: FATE project under the International Arctic Science Committee and the National Science Foundation through the International Arctic Research Centre in Fairbanks. Nicola Gedney was supported by the U.K. Department for Environment, Food and Rural Affairs under the Climate Prediction Programme PECD/7/12/37.
    Keywords: Arctic carbon cycle ; Biogeochemical cycles ; Carbon balance ; Carbon cycle modeling ; High-latitude remote sensing ; Methane modeling ; Tundra
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Ecological Society of America, 2007. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Applications 17 (2007): 203–212, doi:10.1890/1051-0761(2007)017[0203:NEOCAC]2.0.CO;2.
    Description: We used a biogeochemistry model, the Terrestrial Ecosystem Model (TEM), to study the net methane (CH4) fluxes between Alaskan ecosystems and the atmosphere. We estimated that the current net emissions of CH4 (emissions minus consumption) from Alaskan soils are 3 Tg CH4/yr. Wet tundra ecosystems are responsible for 75% of the region's net emissions, while dry tundra and upland boreal forests are responsible for 50% and 45% of total consumption over the region, respectively. In response to climate change over the 21st century, our simulations indicated that CH4 emissions from wet soils would be enhanced more than consumption by dry soils of tundra and boreal forests. As a consequence, we projected that net CH4 emissions will almost double by the end of the century in response to high-latitude warming and associated climate changes. When we placed these CH4 emissions in the context of the projected carbon budget (carbon dioxide [CO2] and CH4) for Alaska at the end of the 21st century, we estimated that Alaska will be a net source of greenhouse gases to the atmosphere of 69 Tg CO2 equivalents/yr, that is, a balance between net methane emissions of 131 Tg CO2 equivalents/yr and carbon sequestration of 17 Tg C/yr (62 Tg CO2 equivalents/yr).
    Description: This work was supported by an NSF biocomplexity grant (ATM-0120468), by NSF funding the International Arctic Research Center (OPP- 0327664), by the NASA Land Cover and Land Use Change Program (NAG5-6257), and by funding from the MIT Joint Program on the Science and Policy of Global Change.
    Keywords: Alaska (USA) ; Global warming potential ; Greenhouse gas budget ; Methane consumption and emissions ; Methanogenesis ; Methanotrophy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...