GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Seasonal variability  (4)
  • Air-sea heat flux  (2)
  • Reanalysis data  (2)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 30 (2017): 3829-3852, doi:10.1175/JCLI-D-16-0479.1.
    Description: This study provides an assessment of the uncertainty in ocean surface (OS) freshwater budgets and variability using evaporation E and precipitation P from 10 atmospheric reanalyses, two combined satellite-based E − P products, and two observation-based salinity products. Three issues are examined: the uncertainty level in the OS freshwater budget in atmospheric reanalyses, the uncertainty structure and association with the global ocean wet/dry zones, and the potential of salinity in ascribing the uncertainty in E − P. The products agree on the global mean pattern but differ considerably in magnitude. The OS freshwater budgets are 129 ± 10 (8%) cm yr−1 for E, 118 ± 11 (9%) cm yr−1 for P, and 11 ± 4 (36%) cm yr−1 for E − P, where the mean and error represent the ensemble mean and one standard deviation of the ensemble spread. The E − P uncertainty exceeds the uncertainty in E and P by a factor of 4 or more. The large uncertainty is attributed to P in the tropical wet zone. Most reanalyses tend to produce a wider tropical rainband when compared to satellite products, with the exception of two recent reanalyses that implement an observation-based correction for the model-generated P over land. The disparity in the width and the extent of seasonal migrations of the tropical wet zone causes a large spread in P, implying that the tropical moist physics and the realism of tropical rainfall remain a key challenge. Satellite salinity appears feasible to evaluate the fidelity of E − P variability in three tropical areas, where the uncertainty diagnosis has a global indication.
    Description: Primary support for the study is provided by the NOAAModeling, Analysis, Predictions, and Projections (MAPP) Program’s Climate Reanalysis Task Force (CRTF) through Grant NA13OAR4310106.
    Description: 2017-11-02
    Keywords: Hydrologic cycle ; Precipitation ; Evaporation ; Salinity ; Water budget ; Reanalysis data
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society 2006. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 19 (2006): 6153–6169, doi:10.1175/JCLI3970.1.
    Description: The present study used a new net surface heat flux (Qnet) product obtained from the Objective Analyzed Air–Sea Fluxes (OAFlux) project and the International Satellite Cloud Climatology Project (ISCCP) to examine two specific issues—one is to which degree Qnet controls seasonal variations of sea surface temperature (SST) in the tropical Atlantic Ocean (20°S–20°N, east of 60°W), and the other is whether the physical relation can serve as a measure to evaluate the physical representation of a heat flux product. To better address the two issues, the study included the analysis of three additional heat flux products: the Southampton Oceanographic Centre (SOC) heat flux analysis based on ship reports, and the model fluxes from the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis and the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40). The study also uses the monthly subsurface temperature fields from the World Ocean Atlas to help analyze the seasonal changes of the mixed layer depth (hMLD). The study showed that the tropical Atlantic sector could be divided into two regimes based on the influence level of Qnet. SST variability poleward of 5°S and 10°N is dominated by the annual cycle of Qnet. In these regions the warming (cooling) of the sea surface is highly correlated with the increased (decreased) Qnet confined in a relatively shallow (deep) hMLD. The seasonal evolution of SST variability is well predicted by simply relating the local Qnet with a variable hMLD. On the other hand, the influence of Qnet diminishes in the deep Tropics within 5°S and 10°N and ocean dynamic processes play a dominant role. The dynamics-induced changes in SST are most evident along the two belts, one of which is located on the equator and the other off the equator at about 3°N in the west, which tilts to about 10°N near the northwestern African coast. The study also showed that if the degree of consistency between the correlation relationships of Qnet, hMLD, and SST variability serves as a measure of the quality of the Qnet product, then the Qnet from OAFlux + ISCCP and ERA-40 are most physically representative, followed by SOC. The NCEP–NCAR Qnet is least representative. It should be noted that the Qnet from OAFlux + ISCCP and ERA-40 have a quite different annual mean pattern. OAFlux + ISCCP agrees with SOC in that the tropical Atlantic sector gains heat from the atmosphere on the annual mean basis, where the ERA-40 and the NCEP–NCAR model reanalyses indicate that positive Qnet occurs only in the narrow equatorial band and in the eastern portion of the tropical basin. Nevertheless, seasonal variances of the Qnet from OAFlux + ISCCP and ERA-40 are very similar once the respective mean is removed, which explains why the two agree with each other in accounting for the seasonal variability of SST. In summary, the study suggests that an accurate estimation of surface heat flux is crucially important for understanding and predicting SST fluctuations in the tropical Atlantic Ocean. It also suggests that future emphasis on improving the surface heat flux estimation should be placed more on reducing the mean bias.
    Description: This study is support by the NOAA CLIVAR Atlantic under Grant NA06GP0453 and NOAA Climate observations and Climate Change and Data Detection under Grant NA17RJ1223.
    Keywords: Sea surface temperature ; Surface fluxes ; Seasonal variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 20 (2007): 3190-3209, doi:10.1175/JCLI4163.1.
    Description: This study investigated the accuracy and physical representation of air–sea surface heat flux estimates for the Indian Ocean on annual, seasonal, and interannual time scales. Six heat flux products were analyzed, including the newly developed latent and sensible heat fluxes from the Objectively Analyzed Air–Sea Heat Fluxes (OAFlux) project and net shortwave and longwave radiation results from the International Satellite Cloud Climatology Project (ISCCP), the heat flux analysis from the Southampton Oceanography Centre (SOC), the National Centers for Environmental Prediction reanalysis 1 (NCEP1) and reanalysis-2 (NCEP2) datasets, and the European Centre for Medium-Range Weather Forecasts operational (ECMWF-OP) and 40-yr Re-Analysis (ERA-40) products. This paper presents the analysis of the six products in depicting the mean, the seasonal cycle, and the interannual variability of the net heat flux into the ocean. Two time series of in situ flux measurements, one taken from a 1-yr Arabian Sea Experiment field program and the other from a 1-month Joint Air–Sea Monsoon Interaction Experiment (JASMINE) field program in the Bay of Bengal were used to evaluate the statistical properties of the flux products over the measurement periods. The consistency between the six products on seasonal and interannual time scales was investigated using a standard deviation analysis and a physically based correlation analysis. The study has three findings. First of all, large differences exist in the mean value of the six heat flux products. Part of the differences may be attributable to the bias in the numerical weather prediction (NWP) models that underestimates the net heat flux into the Indian Ocean. Along the JASMINE ship tracks, the four NWP modeled mean fluxes all have a sign opposite to the observations, with NCEP1 being underestimated by 53 W m−2 (the least biased) and ECMWF-OP by 108 W m−2 (the most biased). At the Arabian Sea buoy site, the NWP mean fluxes also have an underestimation bias, with the smallest bias of 26 W m−2 (ERA-40) and the largest bias of 69 W m−2 (NCEP1). On the other hand, the OAFlux+ISCCP has the best comparison at both measurement sites. Second, the bias effect changes with the time scale. Despite the fact that the mean is biased significantly, there is no major bias in the seasonal cycle of all the products except for ECMWF-OP. The latter does not have a fixed mean due to the frequent updates of the model platform. Finally, among the four products (OAFlux+ISCCP, ERA-40, NCEP1, and NCEP2) that can be used for studying interannual variability, OAFlux+ISCCP and ERA-40 Qnet have good consistency as judged from both statistical and physical measures. NCEP1 shows broad agreement with the two products, with varying details. By comparison, NCEP2 is the least representative of the Qnet variabilities over the basin scale.
    Description: This work is supported by the NOAA Office of Climate Observation and the Office of Climate Change and Data Detection under Grant NA17RJ1223.
    Keywords: Indian Ocean ; Interannual variability ; Seasonal variability ; Fluxes ; Air-sea interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 29 (2016): 3647-3660, doi:10.1175/JCLI-D-15-0626.1.
    Description: An assessment is made of the mean and variability of the net air–sea heat flux, Qnet, from four products (ECCO, OAFlux–CERES, ERA-Interim, and NCEP1) over the global ice-free ocean from January 2001 to December 2010. For the 10-yr “hiatus” period, all products agree on an overall net heat gain over the global ice-free ocean, but the magnitude varies from 1.7 to 9.5 W m−2. The differences among products are particularly large in the Southern Ocean, where they cannot even agree on whether the region gains or loses heat on the annual mean basis. Decadal trends of Qnet differ significantly between products. ECCO and OAFlux–CERES show almost no trend, whereas ERA-Interim suggests a downward trend and NCEP1 shows an upward trend. Therefore, numerical simulations utilizing different surface flux forcing products will likely produce diverged trends of the ocean heat content during this period. The downward trend in ERA-Interim started from 2006, driven by a peculiar pattern change in the tropical regions. ECCO, which used ERA-Interim as initial surface forcings and is constrained by ocean dynamics and ocean observations, corrected the pattern. Among the four products, ECCO and OAFlux–CERES show great similarities in the examined spatial and temporal patterns. Given that the two estimates were obtained using different approaches and based on largely independent observations, these similarities are encouraging and instructive. It is more likely that the global net air–sea heat flux does not change much during the so-called hiatus period.
    Description: This paper is funded in part by the NOAA Climate Observation Division, Climate Program Office, under Grant NA09OAR4320129 and by the NOAA MAPP Climate Reanalysis Task Force Team under Grant NA13OAR4310106. The study was initiated when X. Liang was a postdoc at MIT, where he was supported in part by the NSF through Grant OCE-0961713, by NOAA through Grant NA10OAR4310135, and by the NASA Physical Oceanography Program through ECCO.
    Description: 2016-11-15
    Keywords: Physical Meteorology and Climatology ; Heat budgets/fluxes ; Surface fluxes ; Models and modeling ; Reanalysis data ; Variability ; Climate variability ; Interannual variability ; Seasonal variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bingham, F. M., Brodnitz, S., & Yu, L. Sea surface salinity seasonal variability in the tropics from satellites, gridded in situ products and mooring observations. Remote Sensing, 13(1), (2021): 110, doi:10.3390/rs13010110.
    Description: Satellite observations of sea surface salinity (SSS) have been validated in a number of instances using different forms of in situ data, including Argo floats, moorings and gridded in situ products. Since one of the most energetic time scales of variability of SSS is seasonal, it is important to know if satellites and gridded in situ products are observing the seasonal variability correctly. In this study we validate the seasonal SSS from satellite and gridded in situ products using observations from moorings in the global tropical moored buoy array. We utilize six different satellite products, and two different gridded in situ products. For each product we have computed seasonal harmonics, including amplitude, phase and fraction of variance (R2). These quantities are mapped for each product and for the moorings. We also do comparisons of amplitude, phase and R2 between moorings and all the satellite and gridded in situ products. Taking the mooring observations as ground truth, we find general good agreement between them and the satellite and gridded in situ products, with near zero bias in phase and amplitude and small root mean square differences. Tables are presented with these quantities for each product quantifying the degree of agreement.
    Description: This research was funded by the National Aeronautics and Space Administration under grant number 80NSSC18K1322.
    Keywords: Sea surface salinity ; Seasonal variability ; Satellite validation ; Harmonic analysis ; Mooring observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-20
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cronin, M. F., Gentemann, C. L., Edson, J., Ueki, I., Bourassa, M., Brown, S., Clayson, C. A., Fairall, C. W., Farrar, J. T., Gille, S. T., Gulev, S., Josey, S. A., Kato, S., Katsumata, M., Kent, E., Krug, M., Minnett, P. J., Parfitt, R., Pinker, R. T., Stackhouse, P. W., Jr., Swart, S., Tomita, H., Vandemark, D., Weller, R. A., Yoneyama, K., Yu, L., & Zhang, D. Air-sea fluxes with a focus on heat and momentum. Frontiers in Marine Science, 6, (2019): 430, doi:10.3389/fmars.2019.00430.
    Description: Turbulent and radiative exchanges of heat between the ocean and atmosphere (hereafter heat fluxes), ocean surface wind stress, and state variables used to estimate them, are Essential Ocean Variables (EOVs) and Essential Climate Variables (ECVs) influencing weather and climate. This paper describes an observational strategy for producing 3-hourly, 25-km (and an aspirational goal of hourly at 10-km) heat flux and wind stress fields over the global, ice-free ocean with breakthrough 1-day random uncertainty of 15 W m–2 and a bias of less than 5 W m–2. At present this accuracy target is met only for OceanSITES reference station moorings and research vessels (RVs) that follow best practices. To meet these targets globally, in the next decade, satellite-based observations must be optimized for boundary layer measurements of air temperature, humidity, sea surface temperature, and ocean wind stress. In order to tune and validate these satellite measurements, a complementary global in situ flux array, built around an expanded OceanSITES network of time series reference station moorings, is also needed. The array would include 500–1000 measurement platforms, including autonomous surface vehicles, moored and drifting buoys, RVs, the existing OceanSITES network of 22 flux sites, and new OceanSITES expanded in 19 key regions. This array would be globally distributed, with 1–3 measurement platforms in each nominal 10° by 10° box. These improved moisture and temperature profiles and surface data, if assimilated into Numerical Weather Prediction (NWP) models, would lead to better representation of cloud formation processes, improving state variables and surface radiative and turbulent fluxes from these models. The in situ flux array provides globally distributed measurements and metrics for satellite algorithm development, product validation, and for improving satellite-based, NWP and blended flux products. In addition, some of these flux platforms will also measure direct turbulent fluxes, which can be used to improve algorithms for computation of air-sea exchange of heat and momentum in flux products and models. With these improved air-sea fluxes, the ocean’s influence on the atmosphere will be better quantified and lead to improved long-term weather forecasts, seasonal-interannual-decadal climate predictions, and regional climate projections.
    Description: EK was funded by the NERC CLASS Program (NE/R015953/1). CLG was funded by NASA grant 80NSSC18K0837. SG was funded by MEGAGRANT P220 program (#14.W03.31.0006).
    Keywords: Air-sea heat flux ; Latent heat flux ; Surface radiation ; Ocean wind stress ; Autonomous surface vehicle ; OceanSITES ; ICOADS ; Satellite-based ocean monitoring system
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 4068–4087, doi:10.1002/2016JC012254.
    Description: This study provides an analysis of the Mediterranean Sea surface energy budget using nine surface heat flux climatologies. The ensemble mean estimation shows that the net downward shortwave radiation (192 ± 19 W m−2) is balanced by latent heat flux (−98 ± 10 W m−2), followed by net longwave radiation (−78 ± 13 W m−2) and sensible heat flux (−13 ± 4 W m−2). The resulting net heat budget (Qnet) is 2 ± 12 W m−2 into the ocean, which appears to be warm biased. The annual-mean Qnet should be −5.6 ± 1.6 W m−2 when estimated from the observed net transport through the Strait of Gibraltar. To diagnose the uncertainty in nine Qnet climatologies, we constructed Qnet from the heat budget equation by using historic hydrological observations to determine the heat content changes and advective heat flux. We also used the Qnet from a data-assimilated global ocean state estimation as an additional reference. By comparing with the two reference Qnet estimates, we found that seven products (NCEP 1, NCEP 2, CFSR, ERA-Interim, MERRA, NOCSv2.0, and OAFlux+ISCCP) overestimate Qnet, with magnitude ranging from 6 to 27 W m−2, while two products underestimate Qnet by −6 W m−2 (JRA55) and −14 W m−2 (CORE.2). Together with the previous warm pool work of Song and Yu (2013), we show that CFSR, MERRA, NOCSv2.0, and OAFlux+ISCCP are warm-biased not only in the western Pacific warm pool but also in the Mediterranean Sea, while CORE.2 is cold-biased in both regions. The NCEP 1, 2, and ERA-Interim are cold-biased over the warm pool but warm-biased in the Mediterranean Sea.
    Description: National Natural Science Foundation of China (NSFC) Grant Number: 41306003 and 41430963; Fundamental Research Funds for the Central Universities Grant Number: 0905-841313038, 1100-841262028, and 0905-201462003; China Postdoctoral Science Foundation Grant Number: 2013M531647; Natural Science Foundation of Shandong Grant Number: BS2013HZ015; Qingdao National Laboratory for Marine Science and Technology
    Description: 2017-11-16
    Keywords: Air-sea heat flux ; Mediterranean Sea ; Heat content changes ; Heat budget analysis
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...