GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Sea surface  (2)
  • Air-sea CO2 flux  (1)
Document type
Keywords
Years
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 52 (2005): 1218-1219, doi:10.1016/j.dsr2.2005.03.003.
    Description: This is our response to a comment by Walter Eifler on our paper `A simple model for the short-time evolution of near-surface current and temperature profiles' (arXiv:physics/0503186, accepted for publication in Deep-Sea Research II ). Although Eifler raises genuine issues regarding our model's validity and applicability, we are nevertheless of the opinion that it is of value for the short-term evolution of the upper-ocean profiles of current and temperature. The fact that the effective eddy viscosity tends to infinity for infinite time under a steady wind stress may not be surprising. It can be interpreted as a vertical shift of the eddy viscosity profile and an increase in the size of the dominant turbulent eddies under the assumed conditions of small stratification and infinite water depth.
    Description: The work was funded by Research Council of Norway projects 127872/720 and 155923/700.
    Keywords: Temperature ; Current ; Turbulence ; Sea surface ; Mathematical modelling ; Profiling instrument
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 85649 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2004. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 52 (2005): 1202-1214, doi:10.1016/j.dsr2.2005.03.005.
    Description: A simple analytical/numerical model has been developed for computing the evolution, over periods of up to a few hours, of the current and temperature profile in the upper layer of the ocean. The model is based upon conservation laws for heat and momentum, and employs an eddy diffusion parameterisation which is dependent on both the wind speed and the wind stress applied at the sea surface. Other parameters such as the bulk-skin surface temperature difference and CO2 flux are determined by application of the Molecular Oceanic Boundary Layer Model (MOBLAM) of Schlussel and Soloviev. A similar model, for the current profile only, predicts a temporary increase in wave breaking intensity and decrease in wave height under conditions where the wind speed increases suddenly, such as, for example, during gusts and squalls. The model results are compared with measurements from the lagrangian Skin Depth Experimental Profiler (SkinDeEP) surface profiling instrument made during the 1999 MOCE-5 field experiment in the waters around Baja California. SkinDeEP made repeated profiles of temperature within the upper few metres of the water column. Given that no tuning was performed in the model, and that the model does not take account of stratification, the results of the model runs are in rather good agreement with the observations. The model may be suitable as an interface between time-independent models of processes very near the surface, and larger-scale three-dimensional time-dependent ocean circulation models. A straightforward extension of the model should also be suitable for making time-dependent computations of gas concentration in the near-surface layer of the ocean.
    Description: The work was funded by Research Council of Norway projects 127872/720 and 155923/700, by the Norwegian high performance computing consortium under grant NN2932K, and by European Commission Contract No. ERBFMBICT983162. Additional funding was provided by NSF grant OCE-0326814.
    Keywords: Temperature ; Current ; Turbulence ; Sea surface ; Mathematical modelling ; Profiling instrument
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 366912 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C08S08, doi:10.1029/2003JC001800.
    Description: The difference in the fugacities of CO2 across the diffusive sublayer at the ocean surface is the driving force behind the air-sea flux of CO2. Bulk seawater fugacity is normally measured several meters below the surface, while the fugacity at the water surface, assumed to be in equilibrium with the atmosphere, is measured several meters above the surface. Implied in these measurements is that the fugacity values are the same as those across the diffusive boundary layer. However, temperature gradients exist at the interface due to molecular transfer processes, resulting in a cool surface temperature, known as the skin effect. A warm layer from solar radiation can also result in a heterogeneous temperature profile within the upper few meters of the ocean. Here we describe measurements carried out during a 14-day study in the equatorial Pacific Ocean (GasEx-2001) aimed at estimating the gradients of CO2 near the surface and resulting flux anomalies. The fugacity measurements were corrected for temperature effects using data from the ship's thermosalinograph, a high-resolution profiler (SkinDeEP), an infrared radiometer (CIRIMS), and several point measurements at different depths on various platforms. Results from SkinDeEP show that the largest cool skin and warm layer biases occur at low winds, with maximum biases of −4% and +4%, respectively. Time series ship data show an average CO2 flux cool skin retardation of about 2%. Ship and drifter data show significant CO2 flux enhancement due to the warm layer, with maximums occurring in the afternoon. Temperature measurements were compared to predictions based on available cool skin parameterizations to predict the skin-bulk temperature difference, along with a warm layer model.
    Description: This material is based upon work supported by the NSF under grant OCE-9986724, and by NOAA/OGP grant GC00-226.
    Keywords: Air-sea CO2 flux ; Warm layer ; Cool skin
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...